ESA Conducts First Test For Largest Mars Mission Parachute | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Tue, Apr 03, 2018

ESA Conducts First Test For Largest Mars Mission Parachute

Initial Tests Deemed A Success By The Agency

The largest parachute ever to fly on a Mars mission has been deployed in the first of a series of tests to prepare for the upcoming ExoMars mission that will deliver a rover and a surface science platform to the Red Planet.

The spacecraft that will carry them is due for launch in July 2020, with arrival at Mars in March 2021. The rover will be the first of its kind to drill below the surface and determine if evidence of life is buried underground, protected from the destructive radiation that impinges the surface today.

A carrier module will transport the rover and the science platform to Mars within a single aeroshell. A descent module will separate from the carrier shortly before reaching the atmosphere, whereupon a heatshield, parachutes, thrusters and damping systems will reduce the speed, delivering them safely to the surface.


The focus of the latest test, conducted in sub-zero conditions in Kiruna, Sweden in March, was the 115-foot-diameter second main parachute. The test demonstrated the deployment and inflation of the parachute with its 112 lines connected to a drop test vehicle, via the deployment of a smaller 16-foot-wide pilot chute. The complete parachute system, totaling some 430 pounds, is stowed in a dedicated canister. The second main parachute of 155 pounds is folded with its three miles of cords in a precise way – a process that takes around three working days – to ensure it is extracted properly.

The assembly was lofted nearly a mile above the ground with a helicopter, and the sequence initiated after the vehicle was released. About 12 seconds after the pilot chute was inflated, the second parachute release was triggered. GoPro cameras on the 1,100-pound test vehicle looked up at the parachute inflation, and onboard equipment sent telemetry in real time as it descended in about two and a half minutes to the ground. “The successful deployment of our large ExoMars parachute using a smaller pilot chute and its subsequent stable descent without damage, is a major milestone for the project,” says ESA’s Thierry Blancquaert. “It was a very exciting moment to see this giant parachute unfurl and deliver the test module to the snowy surface in Kiruna, and we’re looking forward to assessing the full parachute descent sequence in the upcoming high-altitude tests.”

That testing will see the equipment dropped from a stratospheric balloon from nearly 18 miles, to more accurately represent the low atmospheric pressure on Mars – a vital aspect when considering parachute inflation.  The subsequent tests will also investigate the full parachute deployment sequence, which comprises two main parachutes, each with a pilot chute.

The dual parachute approach accommodates the much heavier descent module of the ExoMars 2020 mission – some 4,400 pounds compared with over 1,300 pounds of the previous mission.

The first main parachute is a 45-foot-wide ‘disc–gap band’ chute of the same design as deployed on the ExoMars 2016 mission and ESA’s Huygens probe that landed on Saturn’s moon Titan in 2005. It will open while the module is still travelling at supersonic speed, and will be jettisoned prior to the deployment of the second pilot chute and second main parachute once at subsonic speeds. The second main parachute has a ring-slot design, which increases drag at lower speeds. During the latter stage of descent the aeroshell’s front heatshield will be discarded, and the landing platform will be released for its final descent. The platform will then deploy ramps for the rover to drive down and on to Mars to begin its exciting science exploration mission.

The rover will receive commands and relay its scientific data to Earth through the ExoMars Trace Gas Orbiter, which arrived at Mars in 2016 and recently completed a year-long aerobraking campaign to reach its near-circular science orbit – the heaviest spacecraft to ever achieve orbit using this technique.

The orbiter’s main role is to search the atmosphere for trace gases that may be linked to active biological or geological processes.

The ExoMars programme is a joint endeavour between ESA and Roscosmos.

The low-altitude test of the large parachute manufactured by Arescosmo was carried out by Vorticity Ltd at the Swedish Space Corporation Esrange facility. The test was performed under supervision of Thales Alenia Space France as responsible for the Parachute Assembly System, Thales Alenia Space Italy as the ExoMars Prime contractor, and ESA.

(Image provided with ESA news release)

FMI: www.esa.int

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC