Cargo Dragon Set To Depart From Space Station Sunday | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sun, Jan 05, 2020

Cargo Dragon Set To Depart From Space Station Sunday

Will Return Experiments And Other Cargo To Earth January 6

Filled with almost 3,600 pounds of valuable scientific experiments and other cargo, a SpaceX Dragon resupply spacecraft is set to leave the International Space Station Sunday, Jan. 5.

Robotic flight controllers at mission control in Houston will issue remote commands at 9:41 p.m. to release Dragon using the station’s Canadarm2 robotic arm. Expedition 61 Station Commander Luca Parmitano of ESA (European Space Agency) will back up the ground controllers and monitor Dragon’s systems as it departs the orbital laboratory.

Dragon will fire its thrusters to move a safe distance from the station, then execute a deorbit burn as it heads for a parachute-assisted splashdown around 3:04 a.m. Monday, Jan. 6, in the Pacific Ocean southwest of Long Beach, California.

A key component returning aboard Dragon is a faulty battery charge-discharge unit (BCDU), which failed to activate following the Oct. 11 installation of new lithium-ion batteries on the space station’s truss. Expedition 61 flight engineers Christina Koch and Jessica Meir of NASA removed and replaced the BCDU was during a spacewalk Oct. 18. The unit will be returned to teams on Earth for evaluation and repair.

Dragon launched on the SpaceX Falcon 9 rocket Dec. 5 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and arrived at the space station two days later.

Some of the scientific investigations Dragon will return to Earth include:

Tiny Radiation Resistors

Rotifer-B1 examines the effects of spaceflight on tiny aquatic animals, called rotifers, which are found in freshwater ecosystems and soil and are highly resistant to radiation on Earth. The investigation specifically looks at the metabolism and genome of the rotifer Adineta vaga to determine whether they have similar adaptation mechanisms in microgravity.

Mice in Space

Rodent Research-19 examines myostatin and activin, molecular signaling pathways that influence muscle degradation, as possible targets for preventing muscle and bone loss during spaceflight and enhancing recovery following return to Earth. This study also could support the development of therapies for a wide range of conditions that cause muscle and bone loss on Earth.

Finding the Perfect Solution

On Earth, our bodies deal with low-level radiation through a naturally occurring protein that helps our body safely process it. The Growth of Large, Perfect Protein Crystals for Neutron Crystallography (Perfect Crystals) study, aims to help scientists find a way to deal with the problem of radiation during long-duration spaceflight missions using the same protein that is already at work in our bodies.

Convection and Crystallization in Microgravity

The Polymer Convection study examines the effects of gravity on formation and crystallization of Broadband Angular Selective Material (BASM), an optical material with the ability to control the reflection and absorption of light. BASM has applications in polymer packaging, optical films, solar power and electronic displays.

These are just a few of the hundreds of investigations providing opportunities for U.S. government agencies, private industry, and academic and research institutions to conduct microgravity research that leads to new technologies, medical treatments and products that improve life on Earth. Conducting science aboard the orbiting laboratory will help us learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars.

(Image provided with NASA news release)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (04.25.24): Airport Rotating Beacon

Airport Rotating Beacon A visual NAVAID operated at many airports. At civil airports, alternating white and green flashes indicate the location of the airport. At military airports>[...]

ANN's Daily Aero-Linx (04.25.24)

Aero Linx: Fly for the Culture Fly For the Culture, Inc. is a 501(c)(3) non-profit organization that serves young people interested in pursuing professions in the aviation industry>[...]

Klyde Morris (04.22.24)

Klyde Is Having Some Issues Comprehending The Fed's Priorities FMI: www.klydemorris.com>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC