Aerion Expands Collaboration With NASA | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.13.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Fri, Jun 08, 2012

Aerion Expands Collaboration With NASA

Includes Supersonic Design Code Maturation

An expansion of the collaboration between Aerion Corporation and NASA's Glenn Research Center was announced Monday. The two will work together to mature NASA’s new SUPIN (SUPersonic INlet) computer code, which has been developed to perform aerodynamic design and analysis on engine inlets for future high-speed aircraft, such as Aerion’s planned supersonic business jet (SBJ).

Aerion and NASA collaborate on inlet design and advanced boundary layer control methods to achieve efficient and stable supersonic inlet operation without boundary layer bleed. The use of bleed reduces efficiency, as well as increases cost and complexity. Thus, a no-bleed inlet could benefit SBJ performance in anticipated real-world operating conditions. Collaboration with NASA on their SUPIN code began this month and is expected to last approximately one year.

“Our collaborative effort with NASA Glenn to mature the SUPIN supersonic inlet design code builds on our existing relationship with NASA Dryden and both partnerships could pay dividends for years to come in the form of faster and more efficient flight,” said Dr. Richard Tracy, Aerion’s chief technology officer.

This arrangement, made possible through a Space Act Agreement, is in addition to the company’s ongoing collaboration with NASA’s Dryden Flight Research Center on another round of supersonic F-15B flights featuring an Aerion test article. The additional flights, scheduled for this summer, are intended to evaluate supersonic boundary layer transition properties as they relate to manufacturing standards for surface quality and assembly tolerances. These flights and the engine inlet design code maturation project represent two vital elements in the company’s plan to design the world’s first supersonic business jet. (Image provided by Aerion)

FMI: www.nasa.gov, www.aerion.com

Advertisement

More News

Bolen Gives Congress a Rare Thumbs-Up

Aviation Governance Secured...At Least For a While The National Business Aviation Association similarly applauded the passage of the FAA's recent reauthorization, contentedly recou>[...]

The SportPlane Resource Guide RETURNS!!!!

Emphasis On Growing The Future of Aviation Through Concentration on 'AFFORDABLE FLYERS' It's been a number of years since the Latest Edition of Jim Campbell's HUGE SportPlane Resou>[...]

Buying Sprees Continue: Textron eAviation Takes On Amazilia Aerospace

Amazilia Aerospace GmbH, Develops Digital Flight Control, Flight Guidance And Vehicle Management Systems Textron eAviation has acquired substantially all the assets of Amazilia Aer>[...]

Hawker 4000 Bizjets Gain Nav System, Data Link STC

Honeywell's Primus Brings New Tools and Niceties for Hawker Operators Hawker 4000 business jet operators have a new installation on the table, now that the FAA has granted an STC f>[...]

Echodyne Gets BVLOS Waiver for AiRanger Aircraft

Company Celebrates Niche-but-Important Advancement in Industry Standards Echodyne has announced full integration of its proprietary 'EchoFlight' radar into the e American Aerospace>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC