Solar Orbiter's Shield Takes Sun's Heat | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Mon, Jun 09, 2014

Solar Orbiter's Shield Takes Sun's Heat

Exposed To 'Artificial Sun' For Two Weeks During Recent Test

ESA’s Solar Orbiter mission has undergone its latest major test: its protective shield has been subjected to concentrated sunlight to prove it can cope with the fierce temperatures it will encounter close to our parent star.

A "structural–thermal" version of the craft’s sunshield was recently exposed to an artificial Sun for two weeks in Europe’s largest vacuum chamber at ESA’s Technical Centre in Noordwijk, the Netherlands. The outcome ensures it will balance solar illumination, the cold of deep space and internal heat sources to maintain the perfect operating temperature.

Solar Orbiter, due for launch in 2017, sports a portfolio of instruments for in-situ measurements and high-resolution imaging of the Sun. The craft will probe to within almost a quarter of Earth’s distance from the Sun, suffering 13 times the intensity of terrestrial sunlight and temperatures of up to 520°C.

This means Solar Orbiter has been designed around its sunshield: a 3.1 m by 2.4 m sandwich of high-temperature multilayer insulation foil with a black-treated surface. Openings allow sensors to peep through, some behind protective glass or beryllium.

The sunshield was installed in the Large Space Simulator in May for testing. Part was blasted by a beam of simulated sunlight produced by 19 xenon lamps – each consuming 25 kW – and directed onto the shield via a mirror array. Meanwhile, the chamber’s black walls were chilled by –170°C liquid nitrogen running through them to simulate the cold sky surrounding the craft.

The testing confirmed the design and checked the thermal computer model will accurately predict flight temperatures. An infrared camera system monitored and measured the temperature of the shield’s front face in real time, along with heat sensors glued to various parts of the multilayer structure. At the same time, precision "photogrammetric" cameras looked for the slightest movement in the sunshield’s front face as it heated up.

(Image provided by ESA)

FMI: www.esa.int

Advertisement

More News

Airborne-Flight Training 05.09.24: ERAU at AIAA, LIFT Diamond Buy, Epic A&P

Also: Vertical Flight Society, NBAA Maintenance Conference, GA Honored, AMT Scholarship For the first time, students from Embry-Riddle’s Daytona Beach, Florida, campus took t>[...]

ANN's Daily Aero-Term (05.07.24): Hazardous Weather Information

Hazardous Weather Information Summary of significant meteorological information (SIGMET/WS), convective significant meteorological information (convective SIGMET/WST), urgent pilot>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

NTSB Final Report: Cessna 150

(FAA) Inspector Observed That Both Fuel Tanks Were Intact And That Only A Minimal Amount Of Fuel Remained In Each Analysis: According to the pilot, approximately 8 miles from the d>[...]

Aero-News: Quote of the Day (05.08.24)

“Pyka’s Pelican Cargo is unlike any other UAS solution on the market for contested logistics. We assessed a number of leading capabilities and concluded that the Pelica>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC