Astronaut Balancing Act: Training To Help Explorers Re-Adapt To Gravity | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 11.24.14 ** HD iPad-Friendly -- Airborne 11.24.14 **
** Airborne 11.21.14 ** HD iPad-Friendly -- Airborne 11.21.14 **
** Airborne 11.19.14 ** HD iPad-Friendly -- Airborne 11.19.14 **

Fri, Dec 11, 2009

Astronaut Balancing Act: Training To Help Explorers Re-Adapt To Gravity

Walking A Challenge After A Long Space Mission

Astronauts returning from challenging long-duration missions face one more challenge when they get back to Earth -- standing up and walking.

Upon returning to normal gravity, astronauts often suffer from balance problems that lead to dizziness and difficulty standing, walking and turning corners. Dr. Jacob Bloomberg is leading a group of National Space Biomedical Research Institute (NSBRI) scientists in a project to develop techniques to help astronauts adapt quickly to a new gravity environment and to overcome balance disturbances. This concept will also have benefits for non-astronaut populations such as the elderly or people with balance disorders.

Bloomberg of NASA Johnson Space Center Neurosciences Laboratory and his colleagues use a system that consists of a treadmill mounted on a base that can be actively moved in different directions to simulate balance disturbances. Called an Adaptability Training System, the treadmill has a projection screen in front of it that shows an image of a room or hallway that moves as the user walks. Disturbances are simulated by tilting the treadmill in one direction as the image is tilted in another.

"At first, people find it difficult to walk on the treadmill since its movement and images are out of sync. But over time, they learn to walk on it efficiently. We call this concept 'learning to learn,'" said Bloomberg, who is the associate team leader of NSBRI's Sensorimotor Adaptation Team and a senior research scientist at NASA.

In order to perform everyday activities, the brain interprets information provided by the body's sensory systems: the eyes, the inner ear balance organs, the skin and muscle movement receptors. Bloomberg said the problems for astronauts occur during the transition period in which the brain is trying to adapt to a new gravity environment -- either returning to Earth or in the future adjusting to lunar or martian gravity.

"In space, information from the sensory systems is different, particularly when you take away gravity. The brain reinterprets that information, makes adjustments and allows you to do the activities you need to do in space," Bloomberg said. "The down side to that is when you return to Earth, the sensory systems are not used to a normal gravity environment."

Former NASA astronaut Dr. Leroy Chiao experienced balance disturbances following his four spaceflights, one of which was a six-month stay on the International Space Station (ISS). He compared the effects to those experienced after stepping off a fast-spinning playground merry-go-round. "After a merry-go-round ride, the effects go away pretty quickly," Chiao said. "But after a spaceflight, they linger."

Post-flight data collected indicates a correlation between the length of the mission and how long effects linger. Bloomberg said if an astronaut has been in space on a typical two-week shuttle mission, it may take several days to recover. For six-month stays aboard the ISS, it could take at least several weeks to return to normal.

In addition to maximizing training efficiency, Bloomberg is looking at how long the benefit of the adaptability training lasts. Once subjects master the treadmill, they come back periodically for testing to see how well they perform. He is investigating if subjects can retain the training for up to six months, which would allow the training to take place before a long space mission.

An eventual goal of the researchers is to integrate a version of the system into the treadmill on a spacecraft, allowing astronauts to perform adaptability training on long missions. Integration would save space and power, both precious commodities on a spacecraft.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute's science, technology and education projects take place at more than 60 institutions across the United States.

FMI: www.nsbri.org

Advertisement

More News

Airborne 11.21.14: AEA's 3Q/14 Report, Fantasy Of Flight, Modernizing The NAS

Also: Holland Wants Gold, FAA Strangling UAVs?, RAF WWII Trainer For Sale, Bf109s Live, Georgia v Aerospace Engineers The Aircraft Electronics Association has released its third-qu>[...]

Aero-News: Quote Of The Day (11.24.14)

“The NASA Student Launch – now in its 15th year – has engaged hundreds of students and educators in real-world scenarios that solve complex engineering challenges>[...]

Aero-TV: GOGO Business Aviation -- Communicating at the Speed of Flight

Airborne Communications Are One Of The Strengths Of Business Aviation At NBAA2014 ANN CEO and Editor-In-Chief, Jim Campbell, checked in on the world of airborne communication. Ther>[...]

Aero-News: Quote Of The Day (11.23.14)

"Reaching this stage that we call ATLO is a critical milestone. This is a very satisfying point of the mission as we transition from many teams working on their individual elements>[...]

R44 Helicopters Show Up In Iran

Reportedly Purchased Through 'Dealers' Despite Embargo An Iranian company has acquired four Robinson R44 helicopters despite international trade sanctions against that country due >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC