UAVOS Upgrades Main Rotor Blades | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Mon, Feb 17, 2020

UAVOS Upgrades Main Rotor Blades

Improves Composite Blades For Installation On Unmanned Helicopters

UAVOS, a developer of professional unmanned aerial vehicles (UAVs), has announced that it has completed its tests of the new version of the main rotor blades for installation on helicopters with a take-off mass of 110 pounds and a rotor diameter of 102 inches. Composite blades are improved by gluing into the leading edge an all-metal edging. As a result of the modification, the aerodynamic stability of the blade has been improved, and wear resistance has been increased during flights in severe weather conditions: rain, snow, dust, sand, etc., thereby the product’s operating life has doubled.

"Rotor blade tips spin at near sound speeds. And any object, whether it be dust, sand, grass, snow, ice chips, insects, etc. at such speeds, destroys the leading edge,” said UAVOS CEO Aliaksei Stratsilatau. “The new design features upgrades resulting in improved performance envelope and reliability. This approach allows customers to run very lean maintenance programs that require only basic facilities.”

UAVOS main rotor blade is the result of deep technological improvement. The rotor blade operates in very difficult conditions. Aerodynamic forces acting on it bend, twist, pull apart, tend to tear off the shell. To “resist” the impact of aerodynamic forces, the blade must be strong enough. Besides that, the blade should be light and immune to environmental influences.

UAVOS rotor blades are made using the technology of hot molding of composite prepreg material - the technology of manufacturing the blade in a single press die operation. This method rules out the delamination of the lower and upper planes, since there is no glue line. Besides that, the design includes twisting and narrowing of the blade, which increases the strength and rigidity of the product.

UAVOS manufacturing process allows to create blades with high aerodynamic characteristics, thereby increasing their durability, reducing production costs, improving the flight technical parameters of an unmanned helicopter, as well as making flights more reliable in severe weather conditions.

(Image provided with UAVOS news release)

FMI: www.uavos.com

Advertisement

More News

ANN's Daily Aero-Term (05.05.24): Omnidirectional Approach Lighting System

Omnidirectional Approach Lighting System ODALS consists of seven omnidirectional flashing lights located in the approach area of a nonprecision runway. Five lights are located on t>[...]

Aero-News: Quote of the Day (05.05.24)

"Polaris Dawn, the first of the program’s three human spaceflight missions, is targeted to launch to orbit no earlier than summer 2024. During the five-day mission, the crew >[...]

Airborne 05.06.24: Gone West-Dick Rutan, ICON BK Update, SpaceX EVA Suit

Also: 1800th E-Jet, Uncle Sam Sues For Landing Gear, Embraer Ag Plane, Textron Parts A friend of the family reported that Lt. Col. (Ret.) Richard Glenn Rutan flew west on Friday, M>[...]

Airborne 05.03.24: Advanced Powerplant Solutions, PRA Runway Woes, Drone Racing

Also: Virgin Galactic, B-29 Doc to Allentown, Erickson Fire-Fighters Bought, FAA Reauthorization After dealing with a big letdown after the unexpected decision by Skyreach to disco>[...]

Aero-News: Quote of the Day (05.06xx.24)

“Our aircrews are trained and capable of rapidly shifting from operational missions to humanitarian roles. We planned to demonstrate how we, and our BORSTAR partners, respond>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC