New Docking Technology, Advanced Science Equipment To Fly On STS-134 | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Fri, May 13, 2011

New Docking Technology, Advanced Science Equipment To Fly On STS-134

Sixteen Day Mission Set For Launch May 16

Endeavour's STS-134 mission to the International Space Station, which is now scheduled for launch at 0856 EDT on May 16 and planned for 16 days, will carry new spacecraft docking technology, developed in part by NASA's Langley Research Center. The shuttle will also deliver a particle physics detector, known as the Alpha Magnetic Spectrometer-2 that will help researchers study the formation of the universe. Endeavour also will transport a platform that carries spare parts to sustain station operations after the shuttles are retired from service. The mission will feature the last four spacewalks by a shuttle crew.

The test-run of the state-of-the-art docking system, called the Sensor Test for Orion Relative Navigation Risk Mitigation or STORRM, will occur near the end of the mission. Its goal is to validate new sensor and laser technology that will make docking and undocking to the International Space Station (ISS) easier and safer for astronauts. The shuttle crew will undock from the ISS and then re-rendezvous, using the new technology. Langley engineers will be in Houston to monitor the experiment.

STORRM hardware includes a Vision Navigation System (VNS) and a high-resolution docking camera. The VNS is an eye-safe remote laser sensing system that provides an image of the target – in this case, the ISS – along with range and bearing data to precise accuracies. The docking camera is designed to provide high-resolution color images.  Both these sensors will provide real-time three-dimensional images to the crew with a resolution 16 times higher than the current shuttle sensors.

Much like the technology that allows automobiles to parallel-park themselves without driver assistance, the VNS and docking camera would allow the spacecraft to "park" itself. This technology can also aid in hazard avoidance, allowing for safe approach and landing on asteroids and other planetary surfaces. "Engineers from industry and NASA overcame significant schedule and technical challenges to make the STORRM project a reality," said Frank Novak, STORRM project manager from NASA Langley. "Langley designed a radiation tolerant data storage system in six months, capable of storing one terabyte of data."


STORRM Mount Drawing NASA Image

Another group from Langley, the Hypersonic Thermodynamic Infrared Measurements or HYTHIRM team, will keep an eye specifically on the heat of the shuttle's re-entry into Earth's atmosphere, scheduled for 0230 EDT June 1. They're working to improve computer models and designs for future spacecraft thermal protection systems. The team has been successful in acquiring calibrated thermal "snapshots" of re-entry, ranging from Mach 8.5 to Mach 18, during six previous shuttle missions.

The team works with a Navy aircraft that flies under the shuttle so the crew can use a special infrared optical system to record Endeavour's heat signature during re-entry. The Navy NP-3D Orion aircraft and the long-range infrared optical system are called "Cast Glance" and are operated by the NAVAIR Weapons Division, Pt. Mugu, CA. At closest approach, the aircraft will be approximately 25-40 miles from the shuttle. Because the orbiter is banking on descent the plane will not be directly under it. Mission planners say the aircraft location and flight maneuvers have been carefully calculated to ensure safety to the shuttle and the respective crews.

A team from NASA Langley will be in mission control during re-entry to collect the most up-to-date shuttle re-entry information and make recommendations to the P-3 flight crew so it can make adjustments to the camera settings and aircraft position for the best viewing. The data will be recorded and downloaded after the P-3 Orion returns to its base of operations.

FMI: www.nasa.gov/langley

Advertisement

More News

Airborne-Flight Training 05.09.24: ERAU at AIAA, LIFT Diamond Buy, Epic A&P

Also: Vertical Flight Society, NBAA Maintenance Conference, GA Honored, AMT Scholarship For the first time, students from Embry-Riddle’s Daytona Beach, Florida, campus took t>[...]

ANN's Daily Aero-Term (05.07.24): Hazardous Weather Information

Hazardous Weather Information Summary of significant meteorological information (SIGMET/WS), convective significant meteorological information (convective SIGMET/WST), urgent pilot>[...]

Aero-News: Quote of the Day (05.07.24)

"The need for innovation at speed and scale is greater than ever. The X-62A VISTA is a crucial platform in our efforts to develop, test and integrate AI, as well as to establish AI>[...]

NTSB Final Report: Cessna 150

(FAA) Inspector Observed That Both Fuel Tanks Were Intact And That Only A Minimal Amount Of Fuel Remained In Each Analysis: According to the pilot, approximately 8 miles from the d>[...]

Aero-News: Quote of the Day (05.08.24)

“Pyka’s Pelican Cargo is unlike any other UAS solution on the market for contested logistics. We assessed a number of leading capabilities and concluded that the Pelica>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC