Second Flight Of Facebook's Aquila Drone More Successful Than The First | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-05.06.24

Airborne-NextGen-05.07.24

Airborne-Unlimited-05.08.24 Airborne-FlightTraining-05.09.24

Airborne-Unlimited-05.10.24

Sat, Jul 01, 2017

Second Flight Of Facebook's Aquila Drone More Successful Than The First

The Aircraft Took Off, Flew And Landed Safely This Time Around

Facebook has completed the second flight of its Aquila drone it hopes to use to provide internet connectivity to remote areas of the world ... and this time the aircraft landed safely.

The 1 hour and 46 minute flight concluded with a smooth landing on the site prepared by the company at the Yuma Proving Ground in Arizona.

Writing on the Facebook blog, Martin Lois Gomez writes that the company learned some lessons from the first flight, which ended with the drone being damaged when it impacting terrain. Gomez writes that the Aquila was modified by:

  • Adding “spoilers” to the wings, which help to increase drag and reduce lift during the landing approach
  • Incorporating hundreds of sensors to gather new data
  • Modifying the autopilot software
  • Integrating new radios for the communication subsystem
  • Applying a smoother finish on the plane
  • Installing a horizontal propeller stopping mechanism to support a successful landing

The flight included lengthy test points at constant speed, heading, and altitude to measure the airplane’s drag. The data from these “trim shots,” as they’re called, will be used to refine aerodynamic models, which help in predicting the energy usage and thus optimize for battery and solar array size.

The aircraft's structure was also heavily instrumented with hundreds of sensors to collect data about how Aquila's shape responds to flight in real-time. These included hundreds of strain gauges and three-axis inertial measurement units (IMUs.) These tools serve to verify and refine our structural model, which predicts both the static shape of the airplane — designed to be very flexible to respond to wind gusts and maneuvers.

The aircraft landed autonomously on a 500-foot circle of level gravel about the consistency of rough sand. Aquila has no landing gear, per se, and instead lands on Kevlar pads glued to the bottom of the engine pods.

Now, the company will parse the data it collected on this flight to continue to refine and develop the aircraft for its intended use.

(Image courtesy of Facebook)

FMI: Full Post

Advertisement

More News

Aero-News: Quote of the Day (05.09.24)

"Fly-by-wire flight, coupled with additional capability that are being integrated into ALFA, provide a great foundation for Bell to expand on its autonomous capabilities. This airc>[...]

ANN's Daily Aero-Term (05.09.24): Hold Procedure

Hold Procedure A predetermined maneuver which keeps aircraft within a specified airspace while awaiting further clearance from air traffic control. Also used during ground operatio>[...]

ANN's Daily Aero-Linx (05.09.24)

Aero Linx: B-21 Raider The B-21 Raider will be a dual-capable penetrating strike stealth bomber capable of delivering both conventional and nuclear munitions. The B-21 will form th>[...]

Airborne 05.03.24: Advanced Powerplant Solutions, PRA Runway Woes, Drone Racing

Also: Virgin Galactic, B-29 Doc to Allentown, Erickson Fire-Fighters Bought, FAA Reauthorization After dealing with a big letdown after the unexpected decision by Skyreach to disco>[...]

Airborne-NextGen 05.07.24: AI-Piloted F-16, AgEagle, 1st 2 WorldView Sats

Also: Skydio Chief, Uncle Sam Sues, Dash 7 magniX, OR UAS Accelerator US Secretary of the Air Force Frank Kendall was given a turn around the patch in the 'X-62A Variable In-flight>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC