Tested: Air-Breathing Rocket Thruster | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Thu, Jan 09, 2003

Tested: Air-Breathing Rocket Thruster

NASA, Industry Consortium Successfully Test Full-Scale Hypersonic Engine Thruster

Aerojet says that NASA and the Rocket Based Combined Cycle Consortium, or RBCCC, have taken an important step in developing a new engine that could revolutionize access to space and air transportation in the next quarter-century.

The consortium, of which Aerojet is a member, has successfully completed the first in a series of tests of a full-scale rocket thruster -- a crucial element of a rocket based combined cycle engine system. The test, conducted at Aerojet facilities in Sacramento (CA), marked a key milestone in NASA's Integrated System Test of an Air-breathing Rocket (ISTAR) program.

ISTAR intends, by the end of the decade, to flight-test a self-powered hypersonic flight vehicle to more than six times the speed of sound, demonstrating all modes of engine operation. The small, high performance thrusters are intended to power the engine system demonstrator during the early phase of powered flight, accelerating the craft to hypersonic speed (~3,750 mph). At that point, the engine switches to pure air-breathing ramjet and scramjet modes of operation.

The test demonstrated the first successful hot fire of a thruster using a mix of decomposed peroxide, liquid peroxide and JP-7 jet fuel to generate combustion. This 90-percent peroxide "tri-fluid" approach will allow the thrusters to fit within the engine's extremely tight packaging restraints, yet deliver high performance.

NASA's development of hypersonics technologies, including the ISTAR program, is intended to support creation, by 2025, of flight vehicles that will offer safe, routine, affordable space access and air transportation to any point on the globe in less than two hours.

"Our industry team continues to set the bar for hypersonic research," said Steve Cook, deputy manager of the Next Generation Launch Technology Program at NASA's Marshall Space Flight Center in Huntsville (AL). "The flight research now being conducted by RBCCC is unprecedented, pushing the envelope of powered flight like no one has done since the Wright Brothers."

The consortium team conducted two separate thruster test series on behalf of the ISTAR program. The team successfully decomposed liquid peroxide in a platelet catalyst bed to supply hot oxygen to the combustion chamber as an ignition source.

Data gained from this test series -- particularly regarding reaching 90 percent efficiency of the catalyst beds -- was the first step needed to establish a start sequence for the full-scale thruster. The platelet catalyst beds reached 90 percent efficiency in six-tenths of a second.

Secondly, the team demonstrated tri-fluid combustion, or the stable operation of decomposed and liquid peroxide and JP-7. The goal of the test was to establish an ignition start sequence and to characterize the use of liquid hydrogen peroxide to cool the combustion chamber walls. A reliable start sequence was established that minimized the start transient -- the abrupt and potentially risky physical motion of the thrusters during ignition -- and resulted in reaching full chamber pressure in less than one second.

The team will conduct longer-duration thruster tests in early 2003.

RBCCC combines the propulsion development skills of the Rocketdyne Propulsion & Power business of Boeing, Pratt & Whitney, and Aerojet missile and space propulsion business, from Sacramento. The team was tasked by the Marshall Center in late 2001 to design and develop the new rocket based combined cycle engine system.

FMI: www.aerojet.com, www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (05.01.24): Say Altitude

Say Altitude Used by ATC to ascertain an aircraft's specific altitude/flight level. When the aircraft is climbing or descending, the pilot should state the indicated altitude round>[...]

ANN's Daily Aero-Linx (05.01.24)

Aero Linx: European Air Law Association (EALA) EALA was established in 1988 with the aim to promote the study of European air law and to provide an open forum for those with an int>[...]

Classic Aero-TV: Korean War Hero Twice Reborn

From 2023 (YouTube Version): The Life, Death, Life, Death, and Life of a Glorious Warbird In 1981, business-owner Jim Tobul and his father purchased a Chance-Vought F4U Corsair. Mo>[...]

Airborne 04.29.24: EAA B-25 Rides, Textron 2024, G700 Deliveries

Also: USCG Retires MH-65 Dolphins, Irish Aviation Authority, NATCA Warns FAA, Diamond DA42 AD This summer, history enthusiasts will have a unique opportunity to experience World Wa>[...]

Airborne Affordable Flyers 05.02.24: Bobby Bailey, SPRG Report Cards, Skydive!

Also: WACO Kitchen Bails, French SportPlane Mfr to FL, Dynon-Advance Flight Systems, Innovation Preview Bobby Bailey, a bit of a fixture in sport aviation circles for his work with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC