Within 100 Meters: UC Irvine Gets NASA/JPL Contract For Pinpoint Mars Landings | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-Unlimited-04.23.24

Airborne-Unlimited-04.24.24 Airborne-FltTraining-04.25.24

Airborne-Unlimited-04.26.24

Wed, Nov 03, 2004

Within 100 Meters: UC Irvine Gets NASA/JPL Contract For Pinpoint Mars Landings

Professor Kenneth Mease Will Lead Team in Developing Advanced Guidance Algorithms

UC Irvine Monday announced that a researcher within The Henry Samueli School of Engineering has been awarded a contract with NASA, through the Jet Propulsion Laboratory (JPL) to develop guidance algorithms aimed at pinpointing future Mars landers within 100 meters of the desired site.

Kenneth Mease, a professor of mechanical and aerospace engineering, is the principal investigator for the three-year project, a collaborative effort involving his research group and researchers at JPL.

"Pinpointing a Mars landing to within 100 meters enables science instruments to be delivered close to gullies, rock outcrops or canyon walls. Without pinpoint accuracy, landing near such scientifically interesting objects would be too risky," said Mease. "Mars missions to date have at best been capable of landing within 20-30 kilometers of a target site. Achieving pinpoint accuracy requires automated on-board guidance during the atmospheric flight and the terminal powered descent."

Mease's team will develop an algorithm to control a Mars lander's flight during the "hypersonic entry phase" to compensate for variations in atmospheric conditions and vehicle performance, and deliver the vehicle with pinpoint accuracy to the parachute deployment point. He is also developing a guidance algorithm that will steer the lander during the "powered-descent phase" to compensate for wind drift during the parachute phase. Comprehensive real-time simulation testing of the algorithms in flight-like processors will be conducted at JPL. The first demonstration of pinpoint landing is under consideration for a Mars mission in 2011.

The total contract value is $679,000.

FMI: www.eng.uci.edu

Advertisement

More News

Unfortunate... ANN/SportPlane Resource Guide Adds To Cautionary Advisories

The Industry Continues to be Rocked By Some Questionable Operations Recent investigations and a great deal of data has resulted in ANN’s SportPlane Resource Guide’s rep>[...]

ANN FAQ: Turn On Post Notifications

Make Sure You NEVER Miss A New Story From Aero-News Network Do you ever feel like you never see posts from a certain person or page on Facebook or Instagram? Here’s how you c>[...]

ANN's Daily Aero-Term (04.29.24): Visual Approach Slope Indicator (VASI)

Visual Approach Slope Indicator (VASI) An airport lighting facility providing vertical visual approach slope guidance to aircraft during approach to landing by radiating a directio>[...]

ANN's Daily Aero-Term (04.28.24): Airport Marking Aids

Airport Marking Aids Markings used on runway and taxiway surfaces to identify a specific runway, a runway threshold, a centerline, a hold line, etc. A runway should be marked in ac>[...]

ANN's Daily Aero-Linx (04.28.24)

Aero Linx: The Skyhawk Association The Skyhawk Association is a non-profit organization founded by former Skyhawk Pilots which is open to anyone with an affinity for the A-4 Skyhaw>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC