NASA's Space Launch System Is A 'Go' | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Sat, Oct 24, 2015

NASA's Space Launch System Is A 'Go'

Critical Design Review, RS-25 Engine Testing Completed

NASA’s Space Launch System program has completed its Critical Design Review, and major subsystems such as Orion’s launch abort system and the SLS RS-25 engines have recently completed successful testing. These accomplishments bring America one step closer to deep space – preserving the nation’s leadership in human space exploration.

“The successes and milestones we are seeing are incredibly important steps in the development of NASA’s heavy-lift, deep space exploration vehicle,” said Charlie Precourt, vice president and general manager for Orbital ATK’s Propulsion Systems Division, and four-time space shuttle astronaut. “This rocket is the foundation of a very promising future for human spaceflight, and will take humans farther than we’ve ever gone before.”

This is the first time since the 1970s that NASA has completed CDR on a major new launch vehicle. Experts from NASA and industry validated that the SLS, as designed, meets all system requirements and is within cost and schedule constraints. It’s a ‘go’ for production, assembly, integration and testing of the vehicle as a whole.

Four major industry players are building the SLS and Orion spacecraft for NASA’s crewed exploration missions that will travel beyond the moon and into deep space. Boeing is designing, developing, producing and testing the rocket’s core and upper stage, as well as the avionics. Orbital ATK provides the solid rocket boosters that supply more than 75% of the required thrust during the first two minutes of flight, and Aerojet Rocketdyne provides the reliable, flight-proven RS-25 and RL-10 engines for the core and upper stage that carry SLS and Orion into orbit and on to deep space on the first flight of SLS. Lockheed Martin is designing  and building the Orion spacecraft, which will fly on top of SLS and into deep space.

Recent SLS milestones include the successful qualification ground test of the SLS booster, completion of the first RS-25 engine test-firing series, and flight hardware production of the major elements that make up the rocket’s core stage. Boeing is producing core stage flight hardware at NASA’s Michoud Assembly Facility and building out additional test and integration facilities. Additionally, Boeing and NASA are completing avionics systems at NASA’s Marshall Space Flight Center that will control launch and guidance systems for the rocket.

Aerojet Rocketdyne began a series of RS-25 hot-fire tests earlier this year at NASA’s Stennis Space Center to ensure the re-purposed Space Shuttle Main Engines are compatible with the full range of conditions expected on SLS.

“We are increasing the cadence of the RS-25 tests to verify each engine’s performance prior to their first flight in 2018,” said Julie Van Kleeck, Aerojet Rocketdyne, vice president, Advanced Space & Launch. “The milestone progress we are making today is setting the stage for many unforeseen discoveries in the future.”

Lockheed Martin engineers have begun welding the Orion Exploration Mission-1 (EM-1) spacecraft at Michoud Assembly Facility. Based on lessons learned from the spacecraft’s test flight last December, engineers are reducing the weight of the vehicle and making manufacturing design improvements.

The completion of these milestones is incredibly important to EM-1 launch readiness in 2018.

EM-1 will be the first time the SLS is integrated with the Orion spacecraft and flies into space. The mission will send Orion into lunar distant retrograde orbit—a wide orbit around the moon that is farther from Earth than any human-rated spacecraft has ever traveled. The uncrewed mission will last more than 20 days and will prove the design and safety of Orion and SLS for human exploration missions to follow.

(Top image provided with Orbital ATK news release. Other image from file)

FMI: www.nasa.gov, www.orbitalatk.com

Advertisement

More News

ANN's Daily Aero-Term (04.25.24): Airport Rotating Beacon

Airport Rotating Beacon A visual NAVAID operated at many airports. At civil airports, alternating white and green flashes indicate the location of the airport. At military airports>[...]

ANN's Daily Aero-Linx (04.25.24)

Aero Linx: Fly for the Culture Fly For the Culture, Inc. is a 501(c)(3) non-profit organization that serves young people interested in pursuing professions in the aviation industry>[...]

Klyde Morris (04.22.24)

Klyde Is Having Some Issues Comprehending The Fed's Priorities FMI: www.klydemorris.com>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC