NASA Research To Help Aircraft Avoid Ocean Storms, Turbulence | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Jul 08, 2009

NASA Research To Help Aircraft Avoid Ocean Storms, Turbulence

Goal Is To Identify Rapidly Intensifying Storms

NASA is funding the development of a prototype system to provide aircraft with updates about severe storms and turbulence as they fly across remote ocean regions.

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., in partnership with colleagues at the University of Wisconsin, are developing a system that combines satellite data and computer weather models with cutting-edge artificial intelligence techniques. The goal is to identify and predict rapidly evolving storms and other potential areas of turbulence.

"Turbulence is the leading cause of injuries in commercial aviation," said John Haynes, program manager in the Earth Science Division's Applied Sciences Program at NASA Headquarters in Washington. "This new work to detect the likelihood of turbulence associated with oceanic storms using key space-based indicators is of crucial importance to pilots."

The system is designed to help guide pilots away from intense weather. A variety of NASA spacecraft observations are being used in the project, including data from NASA's Terra, Aqua, Tropical Rainfall Measuring Mission, CloudSat and CALIPSO satellites.

The prototype system will identify areas of turbulence in clear regions of the atmosphere as well as within storms. It is on track for testing next year. Pilots on selected transoceanic routes will receive real-time turbulence updates and provide feedback. When the system is finalized, it will provide pilots and ground-based controllers with text-based maps and graphical displays showing regions of likely turbulence and storms.

"Pilots currently have little weather information as they fly over remote stretches of the ocean, which is where some of the worst turbulence occurs," said scientist John Williams, one of the project leads at NCAR. "Providing pilots with at least an approximate picture of developing storms could help guide them safely around areas of potentially severe turbulence."

NCAR currently provides real-time maps of turbulence at various altitudes over the continental United States. Williams and his colleagues are building on this expertise to identify turbulence over oceans. The team has created global maps of clear air turbulence based on global computer weather models that include winds and other instabilities in the atmosphere. Drawing on satellite images of storms, the scientists also have created global views of the tops of storm clouds. Higher cloud tops often are associated with more intense storms, although not necessarily with turbulence.

The next step is to pinpoint areas of possible turbulence within and around intense storms. The team will study correlations between storms and turbulence over the continental United States, where weather is closely observed, and then infer patterns of turbulence for storms over oceans.

In addition to providing aircraft and ground controllers with up-to-the-minute maps of turbulence, the NCAR team is turning to an artificial intelligence technique, known as "random forests," to provide short-term forecasts.

Random forests, which have proven useful for forecasting thunderstorms over land, consist of many decision trees that each cast a yes-or-no "vote" on crucial elements of the storm at future points in time and space. This enables scientists to forecast the movement and strength of the storm during the next few hours.

"Our goal is to give pilots a regularly updated picture of the likely storms ahead as they fly over the ocean, so they can take action to minimize turbulence and keep their aircraft out of danger," explained NCAR scientist Cathy Kessinger, a project team member.

The NCAR project is funded by NASA's Applied Sciences Program, which seeks to translate NASA's investment in Earth observations into applications that address real problems. The program and its partners are working to bridge the gap between research results and operational aviation weather products in such areas as in-flight icing, convective weather, turbulence, volcanic ash and space weather.

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC