NASA-Sponsored Research Explains Missing Sunspots | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Mon, Mar 07, 2011

NASA-Sponsored Research Explains Missing Sunspots

Solar Minimum Can Effect Earth's Atmosphere, Space Debris

NASA-sponsored research has resulted in the first computer model that could explain the recent period of decreased solar activity during the sun's 11-year cycle.

This recent solar minimum, a period characterized by a lower frequency of sunspots and solar storms, was the deepest observed in almost 100 years. The solar minimum has repercussions on the safety of space travel and the amount of orbital debris our planet accumulates. Solar scientists around the world were puzzled by the extended disappearance of sunspots in 2008-2009. Results published in Thursday's edition of Nature indicate the mystery may be solved.

"Plasma currents deep inside the sun interfered with the formation of sunspots and prolonged the solar minimum," says lead author Dibyendu Nandi of the Indian Institute of Science Education and Research in Kolkata.

During this deep solar minimum, the sun's magnetic field weakened, allowing cosmic rays to penetrate the solar system in record numbers making space a more dangerous place to travel. At the same time, the decrease in ultraviolet radiation caused Earth's upper atmosphere to cool and collapse. As a consequence space debris stopped decaying and started accumulating in Earth orbit due to increased atmospheric drag. These effects demonstrate the importance of understanding the entire solar cycle, during both minimum and maximum.

Observations from NASA's Solar Dynamics Observatory (SDO) will eventually provide measurements that could validate the current model and provide the basis for future solar cycle prediction. "This research demonstrates how observations from Heliophysics System Observatory missions stimulate new theories and advance modeling techniques," says Richard Fisher, director of the Heliophysics Division in NASA's Science Mission Directorate at the agency's headquarters in Washington.

FMI: www.nasa.gov/sunearth

Advertisement

More News

ANN's Daily Aero-Term (04.24.24): Runway Lead-in Light System

Runway Lead-in Light System Runway Lead-in Light System Consists of one or more series of flashing lights installed at or near ground level that provides positive visual guidance a>[...]

ANN's Daily Aero-Linx (04.24.24)

Aero Linx: Aviation Without Borders Aviation Without Borders uses its aviation expertise, contacts and partnerships to enable support for children and their families – at hom>[...]

Aero-FAQ: Dave Juwel's Aviation Marketing Stories -- ITBOA BNITBOB

Dave Juwel's Aviation Marketing Stories ITBOA BNITBOB ... what does that mean? It's not gibberish, it's a lengthy acronym for "In The Business Of Aviation ... But Not In The Busine>[...]

Classic Aero-TV: Best Seat in The House -- 'Inside' The AeroShell Aerobatic Team

From 2010 (YouTube Version): Yeah.... This IS A Really Cool Job When ANN's Nathan Cremisino took over the lead of our Aero-TV teams, he knew he was in for some extra work and a lot>[...]

Airborne Affordable Flyers 04.18.24: CarbonCub UL, Fisher, Affordable Flyer Expo

Also: Junkers A50 Heritage, Montaer Grows, Dynon-Advance Flight Systems, Vans' Latest Officially, the Carbon Cub UL and Rotax 916 iS is now in its 'market survey development phase'>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC