Boeing Completes First 7E7 Composite Fuselage Section | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Thu, Jan 13, 2005

Boeing Completes First 7E7 Composite Fuselage Section

First Full-Scale, All Composite Demonstrator

Boeing has completed the first full-scale composite one-piece fuselage section for its new 7E7 Dreamliner program, demonstrating concepts for 7E7 production that begins next year.

The structure, 22-feet (7-meters) long and nearly 19-feet (6-meters) wide, is the 7E7's first major development piece.

"This is a piece of aviation history," said Walt Gillette, Boeing vice president of Engineering, Manufacturing and Partner Alignment. "Nothing like this is already in production. Hundreds of aerospace experts from Boeing and our partners developed everything, including the design, tools that served as the mold, programming for the composite lay-down, and tools that moved the structure into the autoclave. "

He added that using composites "allowed us to create optimized structural designs and develop an efficient production process. We now see how all advanced airplanes will be built from this time forward."

The barrel section was built last month, after several months of development work. Building the piece, which includes stringers, started with computerized lay-down of composite tape on a huge mold. That mold was mounted on a tool that rotated the barrel as the tape was applied. The structure was then wrapped and placed in Boeing's autoclave for curing. The final step was unwrapping, inspection and tool removal.

The team subsequently cut out windows and doors, and tested a painting process. It also ran numerous tests to verify structural integrity.

Gillette added that "everyone will see benefits of this technology -- Boeing and our partners, our customers and the flying public. By integrating this into a single composite structure, we reduced the number of parts in this section significantly and reduced the weight by almost 20 percent. That will mean lower costs for the airlines while for passengers it enables us to have bigger windows, lower cabin altitude pressurization, and higher cabin humidity."

The team will build seven more development pieces, representing different sections of the airplane, throughout 2005.

FMI: www.boeing.com

Advertisement

More News

ANN's Daily Aero-Term (05.01.24): Say Altitude

Say Altitude Used by ATC to ascertain an aircraft's specific altitude/flight level. When the aircraft is climbing or descending, the pilot should state the indicated altitude round>[...]

ANN's Daily Aero-Linx (05.01.24)

Aero Linx: European Air Law Association (EALA) EALA was established in 1988 with the aim to promote the study of European air law and to provide an open forum for those with an int>[...]

Classic Aero-TV: Korean War Hero Twice Reborn

From 2023 (YouTube Version): The Life, Death, Life, Death, and Life of a Glorious Warbird In 1981, business-owner Jim Tobul and his father purchased a Chance-Vought F4U Corsair. Mo>[...]

Airborne 04.29.24: EAA B-25 Rides, Textron 2024, G700 Deliveries

Also: USCG Retires MH-65 Dolphins, Irish Aviation Authority, NATCA Warns FAA, Diamond DA42 AD This summer, history enthusiasts will have a unique opportunity to experience World Wa>[...]

Airborne Affordable Flyers 05.02.24: Bobby Bailey, SPRG Report Cards, Skydive!

Also: WACO Kitchen Bails, French SportPlane Mfr to FL, Dynon-Advance Flight Systems, Innovation Preview Bobby Bailey, a bit of a fixture in sport aviation circles for his work with>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC