LISA Pathfinder Set For Trip To Launch Site | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.29.24

Airborne-NextGen-04.30.24

Airborne-Unlimited-05.01.24 Airborne-AffordableFlyers--05.02.24

Airborne-Unlimited-05.03.24

Tue, Sep 08, 2015

LISA Pathfinder Set For Trip To Launch Site

Scheduled For Launch From French Guiana Later This Year

LISA Pathfinder, ESA’s demonstrator for spaceborne observations of gravitational waves, is ready to leave for Europe’s Spaceport in Kourou, French Guiana.

Scheduled for launch on a Vega rocket later this year, the spacecraft was on display today at IABG’s test center in Ottobrunn, near Munich, Germany, where final integration and extensive tests were performed over the past few months. This was the last chance for scientists, engineers and members of the media to see LISA Pathfinder before it is packed for shipping. “This is an extremely challenging mission that will pave the way for future space-based projects to observe gravitational waves, opening a new window to explore the cosmos,” said Paul McNamara, ESA’s project scientist.

Gravitational waves are ripples in the fabric of spacetime produced by accelerating massive bodies, such as a pair of orbiting black holes. Predicted by Albert Einstein’s general theory of relativity in 1915, they are expected to be ubiquitous in the Universe, but have not been directly detected to date.

While ground-based searches for these elusive messengers of gravity have been under way for the past few decades, a gravitational-wave observatory in space would open up new possibilities in this quest. LISA Pathfinder will test the fundamental technologies and instrumentation needed for such an observatory, demonstrating them for the first time in space. “Gravitational waves are an entirely fresh and different way to study the Universe, providing an important complement to the well-established approach of astronomy, based on observing the light emitted by celestial bodies,” says Paul.

Among the anticipated sources of gravitational waves are supernova explosions and double black holes. These objects are thought to be associated with overwhelmingly powerful events. For example, the energy released in gravitational waves during the last few minutes of the merging of just one pair of supermassive black holes is comparable to the total energy emitted as light by all stars and galaxies across the cosmos over the same time.

Scientists are also looking forward to discovering even more, unexpected cosmic sources once they are able to ‘listen’ to the Universe on this new channel. “But we're not quite there yet, and this is where LISA Pathfinder steps in,” says César García Marirrodriga, ESA’s project manager.

Despite the enormous energy release in gravitational waves produced by these mighty cosmic events, they should only cause tiny perturbations to the fabric of spacetime. Instruments built to detect them must be capable of making exquisitely precise measurements of extremely small changes in distance between two reference objects.

Typically, for a space-based gravitational wave observatory, this will mean seeing the distance between two ‘test masses’ separated by around a million kilometres changing by about a millionth of a millionth of a meter. This requires extraordinary measurement techniques using lasers, with the test masses flying freely in space, each shielded by a surrounding spacecraft from all extraneous influences, such as the solar wind.

LISA Pathfinder will test those crucial underlying technologies in a single spacecraft, with the two test masses separated by only 15 inches. The aim is to prove that the masses can fly through space, untouched but shielded by the spacecraft, and maintain their relative positions to the precision needed to realise a full-up gravitational wave observatory later.

“The extreme precision of measurements and control required in this domain pose a great technical challenge,” says Cesar. “In fact, everything was a challenge in this brand-new class of missions: from the innovative instrumentation, to the new modelling of self-gravitation within the spacecraft, and the very complex integration tests of the spacecraft. “The industrial and scientific teams that undertook these daunting tasks have done an extraordinary job, and now the mission is ready for launch.”

After ascent on the Vega rocket, LISA Pathfinder will enter an elliptical orbit around Earth, where it will use its own propulsion system to raise the high point of its orbit. Eventually, after about eight weeks, the spacecraft will reach its operational orbit around the Lagrange point L1, just under a million miles from Earth towards the Sun. There, LISA Pathfinder will begin six months of demonstrating the technology for future gravitational-wave observatories in space.

“We’ve made great progress with LISA Pathfinder in the past decade and are very excited to be so close to operating this incredible physics laboratory in space,” concludes Paul.

(Images provided by ESA)

FMI: www.esa.int

Advertisement

More News

ANN's Daily Aero-Linx (05.02.24)

Aero Linx: Model Aeronautical Association of Australia MAAA clubs are about fun flying, camaraderie and community. For over 75 years, the MAAA has been Australia’s largest fl>[...]

ANN's Daily Aero-Term (05.02.24): Touchdown Zone Lighting

Touchdown Zone Lighting Two rows of transverse light bars located symmetrically about the runway centerline normally at 100 foot intervals. The basic system extends 3,000 feet alon>[...]

Aero-News: Quote of the Day (05.02.24)

“Discovery and innovation are central to our mission at Virgin Galactic. We’re excited to build on our successful record of facilitating scientific experiments in subor>[...]

ANN FAQ: Contributing To Aero-TV

How To Get A Story On Aero-TV News/Feature Programming How do I submit a story idea or lead to Aero-TV? If you would like to submit a story idea or lead, please contact Jim Campbel>[...]

NTSB Final Report: Cirrus Design Corp SR20

Student Pilot Reported That During Rotation, “All Of A Sudden The Back Of The Plane Kicked To The Right..." Analysis: The student pilot reported that during rotation, “>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC