NASA's Spitzer Sees The Light Of Alien | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 10.17.14 ** HD iPad-Friendly -- Airborne 10.17.14 **
** Airborne 10.15.14 ** HD iPad-Friendly -- Airborne 10.15.14 **
** Airborne 10.13.14 ** HD iPad-Friendly -- Airborne 10.13.14 **

Thu, May 10, 2012

NASA's Spitzer Sees The Light Of Alien

Planet Is Not Habitable, But Still Considered A Significant Find

NASA's Spitzer Space Telescope has detected light emanating from a "super-Earth" planet beyond our solar system for the first time. While the planet is not habitable, the detection is a historic step toward the eventual search for signs of life on other planets. "Spitzer has amazed us yet again," said Bill Danchi, Spitzer program scientist at NASA Headquarters in Washington. "The spacecraft is pioneering the study of atmospheres of distant planets and paving the way for NASA's upcoming James Webb Space Telescope to apply a similar technique on potentially habitable planets."

The planet, called 55 Cancri e, falls into a class of planets termed super Earths, which are more massive than our home world but lighter than giant planets like Neptune. Fifty-five Cancri e is about twice as big and eight times as massive as Earth. The planet orbits a bright star, called 55 Cancri, in a mere 18 hours. Previously, Spitzer and other telescopes were able to study the planet by analyzing how the light from 55 Cancri changed as the planet passed in front of the star. In the new study, Spitzer measured how much infrared light comes from the planet itself. The results reveal the planet is likely dark and its sun-facing side is more than 2,000 Kelvin (3,140 degrees Fahrenheit), hot enough to melt metal.

The new information is consistent with a prior theory that 55 Cancri e is a water world: a rocky core surrounded by a layer of water in a "supercritical" state where it is both liquid and gas, and topped by a blanket of steam. "It could be very similar to Neptune, if you pulled Neptune in toward our sun and watched its atmosphere boil away," said Michaël Gillon of Universite de Liege in Belgium, principal investigator of the research, which appears in the Astrophysical Journal. The lead author is Brice-Olivier Demory of the Massachusetts Institute of Technology in Cambridge.

The 55 Cancri system is relatively close to Earth at 41 light-years away. It has five planets, with 55 Cancri e being the closest to the star and tidally locked, so one side always faces the star. Spitzer discovered the sun-facing side is extremely hot, indicating the planet probably does not have a substantial atmosphere to carry the sun's heat to the unlit side. 

NASA's James Webb Space Telescope, scheduled to launch in 2018, likely will be able to learn even more about the planet's composition. The telescope might be able to use a similar infrared method as Spitzer to search other potentially habitable planets for signs of molecules possibly related to life. "When we conceived of Spitzer more than 40 years ago, exoplanets hadn't even been discovered," said Michael Werner, Spitzer project scientist at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "Because Spitzer was built very well, it's been able to adapt to this new field and make historic advances such as this."

In 2005, Spitzer became the first telescope to detect light from a planet beyond our solar system. To the surprise of many, the observatory saw the infrared light of a "hot Jupiter," a gaseous planet much larger than the solid 55 Cancri e. Since then, other telescopes, including NASA's Hubble and Kepler space telescopes, have performed similar feats with gas giants using the same method. In this method, a telescope gazes at a star as a planet circles behind it. When the planet disappears from view, the light from the star system dips ever so slightly, but enough that astronomers can determine how much light came from the planet itself. This information reveals the temperature of a planet, and, in some cases, its atmospheric components. Most other current planet-hunting methods obtain indirect measurements of a planet by observing its effects on the star.

During Spitzer's ongoing extended mission, steps were taken to enhance its unique ability to see exoplanets, including 55 Cancri e. Those steps, which included changing the cycling of a heater and using an instrument in a new way, led to improvements in how precisely the telescope points at targets. (Images provided by NASA)

FMI: www.nasa.gov/spitzer

Advertisement

More News

Klyde Morris (10.20.14)

Klyde Battles The Grammar Psychos!!! FMI: www.klydemorris.com>[...]

Airborne 10.17.14: Enstrom Delivers, Flight School Scandal, NBAA2014

Also: Rare O-46 Rebuild, Valor Unveiled, OK's Anti-Fly-In Airport, FAA Screw-Ups, The first Enstrom Model 480B-G has been delivered to Rick Boswell of New Hampshire with the Garmin>[...]

ANN's Daily Aero-Term (10.20.14): Altostratus

Altostratus This middle cloud genus is composed of water droplets, and sometimes ice crystals, In the mid-latitudes, cloud bases are generally found between 15,000 and 20,000 feet.>[...]

Aero-News: Quote Of The Day (10.20.14)

"I am extremely saddened by the loss of my friend. Peter devoted the last 23 years of his life to this wonderful mission. His faith, dedication, and hard work were something to emu>[...]

AeroSports Update: Sport Performance Aviation Selects Superior XP-320

Superior Air Parts Announces That Sport Performance Aviation Has Selected The XP-320 Engine For The SPA Panther Sport Aircraft Scott Hayes, V.P. Sales and Marketing for Superior Ai>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC