Primary Structure Of NASA'S MAVEN Spacecraft Completed | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Sep 28, 2011

Primary Structure Of NASA'S MAVEN Spacecraft Completed

Next Phase Is Static Load Testing Simulating Launch

The primary structure of NASA's MAVEN spacecraft has been completed at Lockheed Martin's Space Systems Company facility near Denver. The Mars Atmosphere And Volatile EvolutioN (MAVEN) spacecraft is scheduled to launch in November 2013 and will be the first mission devoted to understanding the Martian upper atmosphere.

LMC Photo

In this photo taken on September 8, technicians from Lockheed Martin are inspecting the MAVEN primary structure following its recent completion at the company's Composites Lab. The primary structure is cube shaped at 7.5 feet x 7.5 feet x 6.5 feet high. Built out of composite panels comprised of aluminum honeycomb sandwiched between graphite composite face sheets, the entire structure only weighs 275 pounds. At the center of the structure is the 4.25 feet diameter core cylinder that encloses the hydrazine propellant tank and serves as the primary vertical load-bearing structure. The large tank will hold approximately 3,615 pounds of fuel.

"It's always a significant milestone when the project moves from a paper design to real hardware and software," said Guy Beutelschies, MAVEN program manager at Lockheed Martin Space Systems Company. "Seeing the core structure reinforces the fact that MAVEN is no longer just a set of ideas that scientists and engineers have come up with, it is starting to become a spacecraft." In mid October, the structure will be moved to Lockheed Martin's Structures Test Lab and undergo static load testing, which simulates and tests the many dynamic loads the spacecraft will experience during launch.

Despite the primary structure's light weight, it's designed to support the entire spacecraft mass during the launch, which applies an equivalent axial force at the launch vehicle interface of approximately 61,000 pounds when including accelerations up to 6 Gs. After completion of the static tests, the structure will be moved into a clean room to start propulsion subsystem integration. The Assembly, Test and Launch Operations (ATLO) phase begins July 2012.

NASA Artist's Concept

"There's still a lot of work to go before we have the complete spacecraft, but this is a major step in getting us to the launch pad in two years. All of the team's hard work now will pay off when we get to Mars and see the science results," said Bruce Jakosky, MAVEN principal investigator from the Laboratory for Atmospheric and Space Physics at the University of Colorado (CU/LASP) at Boulder.

The goal of MAVEN is to determine the role that loss of atmospheric gas to space played in changing the Martian climate through time. MAVEN will determine how much of the Martian atmosphere has been lost over time by measuring the current rate of escape to space and gathering enough information about the relevant processes to allow extrapolation backward in time.

FMI: www.nasa.gov/maven

Advertisement

More News

Classic Aero-TV: The Switchblade Flying Car FLIES!

From 2023 (YouTube Versions): Flying Motorcycle, That Is… "First Flight was achieved under cloudy skies but calm winds. The Samson Sky team, positioned along the runway, wat>[...]

ANN FAQ: Q&A 101

A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]

ANN's Daily Aero-Term (04.12.24): Discrete Code

Discrete Code As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; >[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC