NASA's Fermi Catches Thunderstorms Hurling Antimatter Into Space | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 09.19.14 ** HD iPad-Friendly -- Airborne 09.19.14 **
** Airborne 09.17.14 ** HD iPad-Friendly -- Airborne 09.17.14 **
** Airborne 09.15.14 ** HD iPad-Friendly -- Airborne 09.15.14 **

Wed, Jan 12, 2011

NASA's Fermi Catches Thunderstorms Hurling Antimatter Into Space

Particles Form In The "Gamma-Ray Flash" Associated With Lightning

Scientists using NASA's Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before. Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.


NASA Image

"These signals are the first direct evidence that thunderstorms make antimatter particle beams," said Michael Briggs, a member of Fermi's Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.

Fermi is designed to monitor gamma rays, the highest energy form of light. When antimatter striking Fermi collides with a particle of normal matter, both particles immediately are annihilated and transformed into gamma rays. The GBM has detected gamma rays with energies of 511,000 electron volts, a signal indicating an electron has met its antimatter counterpart, a positron.

Although Fermi's GBM is designed to observe high-energy events in the universe, it's also providing valuable insights into this strange phenomenon. The GBM constantly monitors the entire celestial sky above and the Earth below. The GBM team has identified 130 TGFs since Fermi's launch in 2008. "In orbit for less than three years, the Fermi mission has proven to be an amazing tool to probe the universe. Now we learn that it can discover mysteries much, much closer to home," said Ilana Harrus, Fermi program scientist at NASA Headquarters in Washington.

The spacecraft was located immediately above a thunderstorm for most of the observed TGFs, but in four cases, storms were far from Fermi. In addition, lightning-generated radio signals detected by a global monitoring network indicated the only lightning at the time was hundreds or more miles away. During one TGF, which occurred on Dec. 14, 2009, Fermi was located over Egypt. But the active storm was in Zambia, some 2,800 miles to the south. The distant storm was below Fermi's horizon, so any gamma rays it produced could not have been detected. "Even though Fermi couldn't see the storm, the spacecraft nevertheless was magnetically connected to it," said Joseph Dwyer at the Florida Institute of Technology in Melbourne, Fla. "The TGF produced high-speed electrons and positrons, which then rode up Earth's magnetic field to strike the spacecraft."

The beam continued past Fermi, reached a location, known as a mirror point, where its motion was reversed, and then hit the spacecraft a second time just 23 milliseconds later. Each time, positrons in the beam collided with electrons in the spacecraft. The particles annihilated each other, emitting gamma rays detected by Fermi's GBM.

Scientists long have suspected TGFs arise from the strong electric fields near the tops of thunderstorms. Under the right conditions, they say, the field becomes strong enough that it drives an upward avalanche of electrons. Reaching speeds nearly as fast as light, the high-energy electrons give off gamma rays when they're deflected by air molecules. Normally, these gamma rays are detected as a TGF. But the cascading electrons produce so many gamma rays that they blast electrons and positrons clear out of the atmosphere. This happens when the gamma-ray energy transforms into a pair of particles: an electron and a positron. It's these particles that reach Fermi's orbit. The detection of positrons shows many high-energy particles are being ejected from the atmosphere. In fact, scientists now think that all TGFs emit electron/positron beams. A paper on the findings has been accepted for publication in Geophysical Research Letters. "The Fermi results put us a step closer to understanding how TGFs work," said Steven Cummer at Duke University. "We still have to figure out what is special about these storms and the precise role lightning plays in the process."

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. It is managed by NASA's Goddard Space Flight Center in Greenbelt, Md. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

FMI: www.nasa.gov/fermi

Advertisement

More News

Aero-News: Quote Of The Day (09.21.14)

"The RCAF took the initiative to remove these functional, perfectly good parts and use them effectively. It was a sound decision, helping to ensure the long-term viability of the a>[...]

Enhanced F-35 Logistics Systems Delivered To Flight Test Locations

Integrates Preventative Maintenance, Flight Scheduling, And Mission Planning The 'next evolution' of the F-35 Lightning II's information technology backbone called the Autonomic Lo>[...]

Airbus Forecasts Strong Demand For Air Travel In The Middle East

Delivers First A380 To Qatar Airways Saying Airplane Is 'Ideal' For The Region Airbus has delivered Qatar Airways' first A380, and has used the occasion to tout the airplane as pla>[...]

NBAA Names 2014 Humanitarian Award Recipients

International Jet Aviation, Make-A-Wish Foundation, To Be Honored In Orlando The NBAA is pleased to announce that International Jet Aviation Services of Centennial, CO and the Make>[...]

NASA Seeks America's 'Best And Brightest' For Research Fellowships

Applications Period Open For Space Technology Grants NASA is seeking applications from U.S. graduate students for the agency's Space Technology Research Fellowships. The research g>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC