RC Helicopter Tested For Use In Vineyard Applications | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Jun 07, 2013

RC Helicopter Tested For Use In Vineyard Applications

Aircraft Used For Spraying Agricultural Fields For 20 Years In Japan Being Evaluated In CA

A remote-controlled helicopter, fitted with a spray applicator system, was field tested Wednesday over a vineyard in the heart of the famed Napa Valley by engineers at the University of California, Davis, and Yamaha Motor Corporation, USA.

For 20 years, the small motorcycle-sized RMAX helicopter has been used to apply agricultural sprays to rice fields in Japan and is now being tested for potential agricultural uses in the United States, in areas where aerial applications could prove to be safer and more efficient than tractor applications of herbicides and pesticides.
 
UC Davis is now one of the few universities in the nation with an FAA permit to apply sprays with remote-controlled aircraft. That permit applies only to specific agricultural areas, including the University of California Oakville Station. No flights are made in the vicinity of the Davis campus.
 
Flanked by some of the Napa Valley’s most historic winegrape vineyards, the Oakville Experimental Vineyard at the UC Oakville Station provides the ideal site for the field tests, which began in November 2012. “This site not only offers a working-vineyard situation, it also meets all of our federal requirements for flight zones for remote-controlled aircraft,” said Ken Giles, a UC Davis agricultural engineering professor and lead researcher on the project.

Giles noted that the FAA regulates use of all remote-controlled aircraft and requires, for example, that the aircraft not be operated within five miles of an airport, notice of a planned flight be reported to FAA 48 hours in advance and the aircraft’s flight altitude not exceed 20 feet. It took Giles and UC Davis development engineer Ryan Billing — both licensed commercial pilots — five months to obtain FAA clearance to operate the mini-helicopter in the Napa Valley. Experienced Yamaha flight instructors from Japan trained them on the fine points of operating the mini-helicopter.
 
The two UC Davis researchers are building a valuable database that will document how the RMAX might perform in agricultural operations in California and elsewhere in the United States. “We have more than two decades of data on the performance of the RMAX in Japan, but we don’t yet have that kind of information on its use in the United States,” said Steve Markofski, a Yamaha business planner and trained RMAX operator. He noted that in Japan more than 2,500 RMAX helicopters are being used to spray 40 percent of the fields planted to rice — that country’s number one crop.
 
“What Ken and Ryan bring to the table is their spray application expertise and knowledge of the current application methods that are in use in the United States,” Markofski said. “As we collaborate with them on tests of spray deposition and efficiency, we’re gaining insight into to how the RMAX performance compares to spray application methods that are being commercially used for this crop and this terrain.”

Currently, only water is being sprayed on the vineyards as the researchers explore how well the aerial applicator would cover the vineyard. Water-sensitive test papers are spotted at specific sites throughout the vineyards. Water droplets from the helicopter spray system leave on the paper tiny blue dots that, when recorded and computer analyzed, provide valuable information about where the spray is landing.
 
The helicopter is equipped with one eight-liter tank on either side of the fuselage, giving it the capacity to carry 16 liters, or slightly more than four gallons, of water or liquid spray. The aircraft has a recommended maximum spraying speed of approximately 15 mph, as it methodically moves up and down the vineyard rows. So far, the data indicate that the helicopter is providing thorough coverage across the vineyard and that the air currents stirred up by the helicopter rotors are causing the spray to reach even the undersides of the grapevine leaf canopy. Furthermore, the researchers have been impressed by the stability of the helicopter, even in gusty winds.
 
Eventually, the research team plans to conduct application tests with commonly used agricultural pesticides and herbicides. They will explore how well the helicopter compares to a tractor-drawn spray rig in terms of operator safety, cost and efficiency. They also are expanding the test flights to some almond orchards in California's Central Valley.
 
The results of the study — expected to be completed late this summer – will help determine where and how the mini-helicopter might play a role in U.S. agriculture.  In Japan, where rice fields average about five acres and are often surrounded by residential or commercial development, the helicopter provides a safe, efficient method for applying agricultural sprays.

(Images captured from UC Davis YouTube video)

FMI: www.ucdavis.edu/

Advertisement

More News

Classic Aero-TV: The Switchblade Flying Car FLIES!

From 2023 (YouTube Versions): Flying Motorcycle, That Is… "First Flight was achieved under cloudy skies but calm winds. The Samson Sky team, positioned along the runway, wat>[...]

ANN FAQ: Q&A 101

A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]

ANN's Daily Aero-Term (04.12.24): Discrete Code

Discrete Code As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; >[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC