Within 100 Meters: UC Irvine Gets NASA/JPL Contract For Pinpoint Mars Landings | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Nov 03, 2004

Within 100 Meters: UC Irvine Gets NASA/JPL Contract For Pinpoint Mars Landings

Professor Kenneth Mease Will Lead Team in Developing Advanced Guidance Algorithms

UC Irvine Monday announced that a researcher within The Henry Samueli School of Engineering has been awarded a contract with NASA, through the Jet Propulsion Laboratory (JPL) to develop guidance algorithms aimed at pinpointing future Mars landers within 100 meters of the desired site.

Kenneth Mease, a professor of mechanical and aerospace engineering, is the principal investigator for the three-year project, a collaborative effort involving his research group and researchers at JPL.

"Pinpointing a Mars landing to within 100 meters enables science instruments to be delivered close to gullies, rock outcrops or canyon walls. Without pinpoint accuracy, landing near such scientifically interesting objects would be too risky," said Mease. "Mars missions to date have at best been capable of landing within 20-30 kilometers of a target site. Achieving pinpoint accuracy requires automated on-board guidance during the atmospheric flight and the terminal powered descent."

Mease's team will develop an algorithm to control a Mars lander's flight during the "hypersonic entry phase" to compensate for variations in atmospheric conditions and vehicle performance, and deliver the vehicle with pinpoint accuracy to the parachute deployment point. He is also developing a guidance algorithm that will steer the lander during the "powered-descent phase" to compensate for wind drift during the parachute phase. Comprehensive real-time simulation testing of the algorithms in flight-like processors will be conducted at JPL. The first demonstration of pinpoint landing is under consideration for a Mars mission in 2011.

The total contract value is $679,000.

FMI: www.eng.uci.edu

Advertisement

More News

SpaceX to Launch Inversion RAY Reentry Vehicle in Fall

Inversion to Launch Reentry Vehicle Demonstrator Aboard SpaceX Falcon 9 This fall, the aerospace startup Inversion is set to launch its Ray reentry demonstrator capsule aboard Spac>[...]

Aero-News: Quote of the Day (04.23.24)

"We are excited to accelerate the adoption of electric aviation technology and further our journey towards a sustainable future. The agreement with magniX underscores our commitmen>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.20.24)

Aero Linx: OX5 Aviation Pioneers Each year a national reunion of OX5 Aviation Pioneers is hosted by one of the Wings in the organization. The reunions attract much attention as man>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC