First Flight Instrument Delivered For James Webb Space Telescope | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 04.23.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 04.23.14 **
** Airborne 04.21.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 04.21.14 **
** Airborne 04.18.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 04.18.14 **

Mon, Jun 18, 2012

First Flight Instrument Delivered For James Webb Space Telescope

MIRI Was Developed By A European Consortium And NASA's JPL

The first of four instruments to fly aboard NASA's James Webb Space Telescope (Webb) has been delivered to NASA. The Mid-Infrared Instrument (MIRI) will allow scientists to study cold and distant objects in greater detail than ever before. MIRI arrived at NASA's Goddard Space Flight Center in Greenbelt, MD, May 29. It has been undergoing inspection before being integrated into Webb's science instrument payload known as the Integrated Science Instrument Module (ISIM).

Assembled at and shipped from the Science and Technology Facilities Council's Rutherford Appleton Laboratory in the United Kingdom, MIRI was developed by a consortium of 10 European institutions and NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA, after having been handed over to the European Space Agency.

MIRI will observe light with wavelengths in the mid-infrared range of 5 microns to 28 microns, which is a longer wavelength than human eyes can detect. It is the only instrument of the four with this particular ability to observe the physical processes occurring in the cosmos.

"MIRI will enable Webb to distinguish the oldest galaxies from more evolved objects that have undergone several cycles of star birth and death," said Matt Greenhouse, ISIM project scientist at Goddard. "MIRI also will provide a unique window into the birth places of stars which are typically enshrouded by dust that shorter wavelength light cannot penetrate."

MIRI's sensitive detectors will allow it to observe light, cool stars in very distant galaxies; unveil newly forming stars within our Milky Way; find signatures of the formation of planets around stars other than our own; and take imagery and spectroscopy of planets, comets and the outermost bits of debris in our solar system. MIRI's images will enable scientists to study an object's shape and structure.

The most powerful space telescope ever built, Webb is the successor to NASA's Hubble Space Telescope. Webb's four instruments will reveal how the universe evolved from the Big Bang to the formation of our solar system. Webb is a joint project of NASA, the European Space Agency and the Canadian Space Agency. (Image provided by NASA)

FMI: www.nasa.gov

Advertisement

More News

Luftwaffe Ju 52 Discovered On The Bottom Of The Black Sea

Plane Disappeared 67 Years Ago On Transport Mission To The Eastern Front A plane missing since 1942 has been discovered in about 75 feet of water in the Black Sea has been identifi>[...]

AD: British Aerospace Regional Aircraft Airplanes

AD NUMBER: 2014-07-09 PRODUCT: British Aerospace Regional Aircraft Jetstream Series 3101 and Jetstream Model 3201 airplanes.>[...]

AD: Airbus Airplanes

AD NUMBER: 2014-08-04 PRODUCT: Certain Airbus Model A310 series airplanes.>[...]

ANN's Daily Aero-Linx (04.24.14)

South Bay Soaring Society The South Bay Soaring Society (SBSS) is a non-profit radio controlled glider club based in San Jose, CA. They have flying sites in San Jose, Santa Clara, >[...]

ANN's Daily Aero-Term (04.24.14): Dew Point (Abbrev. DWPT)

A measure of atmospheric moisture. It is the temperature to which air must be cooled in order to reach saturation (assuming air pressure and moisture content are constant).>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC