NTSB Chairman Rosenker Urges Airlines To Change Runway Stopping Calculations | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Thu, Dec 07, 2006

NTSB Chairman Rosenker Urges Airlines To Change Runway Stopping Calculations

Asks Carriers To Not Factor Reverse Thrust In Computing Landing Distance

As the one-year anniversary of a tragic runway overrun accident approaches, National Transportation Safety Board Chairman Mark V. Rosenker (right) is urging airlines to voluntarily adopt changes in the way they calculate stopping distances on contaminated runways, in accordance with Federal Aviation Administration (FAA) guidance issued in response to an urgent NTSB recommendation.

As Aero-News reported, on December 8, 2005, Southwest Airlines flight 1248, a Boeing 737-7H4, landed on runway 31C at Chicago Midway Airport during a snow storm. The aircraft failed to stop on the runway, rolling through a blast fence and perimeter fence and coming to rest on a roadway after striking two vehicles. A six-year-old boy in one of the automobiles was killed.

While approaching Chicago on a flight from Baltimore, the pilots used an on-board laptop performance computer (OPC) to calculate expected landing performance. Information entered into the computer included expected landing runway, wind speed and direction, airplane gross weight at touchdown, and reported runway braking action. The OPC then calculated the stopping margin. Depending on whether WET- FAIR or WET-POOR conditions were input, the computer calculated remaining runway after stopping at either 560 feet or 30 feet.

These calculations were based on the assumption that the engine thrust reversers would be deployed immediately upon touchdown. However, flight data recorder information revealed that the thrust reversers were not deployed until 18 seconds after touchdown, at which point there was only about 1,000 feet of usable runway remaining.

As a result of the accident, on January 27, 2006, the Safety Board urged the Federal Aviation Administration to prohibit airlines from using credit for the use of thrust reversers when calculating stopping distances on contaminated runways.

The FAA does not allow operators to take credit for the assumed deployment of thrust reversers upon landing when performing the dispatch landing distance calculations. However, once airborne, the FAA permits operators of certain transport category airplanes like the 737-700 to assume that deployment of thrust reversers will occur immediately upon touchdown and take credit for the reduction in landing distance when pilots re-calculate landing distance just prior to landing.

If the thrust reverser credit had not been allowed in calculating the stopping distance for flight 1248, the OPC would have indicated that a safe landing on runway 31C was not possible.

The FAA responded to the recommendation by publishing a notice in June 2006 that it would issue a mandatory Operations Specification (OpSpec) concerning landing distance calculations that would be effective September 1, 2006. Although the OpSpec did not address reverse thrust credit, it addressed many issues in calculating landing distance including incorporation of a 15% safety factor.

The FAA subsequently announced that it believes it needs to propose this change through the rulemaking process, which will delay implementation of this change. On August 31, 2006, the FAA issued a Safety Alert for Operators (SAFO) urgently recommending that operators of turbojet airplanes voluntarily comply with the OpSpec immediately.

"We think airlines should voluntarily adopt the procedures contained in the FAA's OpSpec now, as we are entering another winter flying season," Chairman Rosenker said.

Chairman Rosenker noted that Midway Airport has improved the safety margin at its runways in the past year, by installing the Engineered Materials Arresting System (EMAS). EMAS uses materials placed at the end of a runway to stop or slow an aircraft that overruns the runway.

FMI: Read The NTSB's Recommendation Letter

Advertisement

More News

ANN's Daily Aero-Term (04.26.24): DETRESFA (Distress Phrase)

DETRESFA (Distress Phrase) The code word used to designate an emergency phase wherein there is reasonable certainty that an aircraft and its occupants are threatened by grave and i>[...]

ANN's Daily Aero-Linx (04.26.24)

Aero Linx: The International Association of Missionary Aviation (IAMA) The International Association of Missionary Aviation (IAMA) is comprised of Mission organizations, flight sch>[...]

Airborne 04.22.24: Rotor X Worsens, Airport Fees 4 FNB?, USMC Drone Pilot

Also: EP Systems' Battery, Boeing SAF, Repeat TBM 960 Order, Japan Coast Guard H225 Buy Despite nearly 100 complaints totaling millions of dollars of potential fraud, combined with>[...]

Airborne 04.24.24: INTEGRAL E, Elixir USA, M700 RVSM

Also: Viasat-uAvionix, UL94 Fuel Investigation, AF Materiel Command, NTSB Safety Alert Norges Luftsportforbund chose Aura Aero's little 2-seater in electric trim for their next gli>[...]

Airborne-NextGen 04.23.24: UAVOS UVH 170, magni650 Engine, World eVTOL Directory

Also: Moya Delivery Drone, USMC Drone Pilot, Inversion RAY Reentry Vehicle, RapidFlight UAVOS has recently achieved a significant milestone in public safety and emergency services >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC