NASA Study Confirms Biofuels Reduce Jet Engine Pollution | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

AMA Drone Report

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday

Airborne-Thursday

Airborne-Friday

Airborne-Unmanned w/AUVSI

Airborne On ANN

AMA 08.17.17

Airborne 08.21.17

Airborne 08.22.17

Airborne 08.23.17

Airborne 08.17.17

Airborne 08.18.17

Airborne-Unmanned 08.22.17

Airborne-YouTube

AMA 08.17.17

Airborne 08.21.17

Airborne 08.22.17

Airborne 08.23.17

Airborne 08.17.17

Airborne 08.18.17

Airborne-Unmanned 08.22.17

NEW!!! 2017 AirVenture Innovation Preview -- YouTube Presentation / Vimeo Presentation

Mon, Mar 20, 2017

NASA Study Confirms Biofuels Reduce Jet Engine Pollution

Cuts Particle Emissions As Much As 70 Percent, Agency Says

Using biofuels to help power jet engines reduces particle emissions in their exhaust by as much as 50 to 70 percent, in a new study conclusion that bodes well for airline economics and Earth’s environment.

The findings are the result of a cooperative international research program led by NASA and involving agencies from Germany and Canada, and are detailed in a study published in the journal Nature

During flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in Edwards, California, data was collected on the effects of alternative fuels on engine performance, emissions and aircraft-generated contrails at altitudes flown by commercial airliners. The test series were part of the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS.

Contrails are produced by hot aircraft engine exhaust mixing with the cold air that is typical at cruise altitudes several miles above Earth's surface, and are composed primarily of water in the form of ice crystals.

Researchers are most interested in persistent contrails because they create long-lasting, and sometimes extensive, clouds that would not normally form in the atmosphere, and are believed to be a factor in influencing Earth’s environment.

"Soot emissions also are a major driver of contrail properties and their formation," said Bruce Anderson, ACCESS project scientist at NASA’s Langley Research Center in Hampton, Virginia. "As a result, the observed particle reductions we’ve measured during ACCESS should directly translate into reduced ice crystal concentrations in contrails, which in turn should help minimize their impact on Earth’s environment."

That’s important because contrails, and the cirrus clouds that evolve from them, have a larger impact on Earth’s atmosphere than all the aviation-related carbon dioxide emissions since the first powered flight by the Wright brothers.

The tests involved flying NASA's workhorse DC-8 as high as 40,000 feet while its four engines burned a 50-50 blend of aviation fuel and a renewable alternative fuel of hydroprocessed esters and fatty acids produced from camelina plant oil. A trio of research aircraft took turns flying behind the DC-8 at distances ranging from 300 feet to more than 20 miles to take measurements on emissions and study contrail formation as the different fuels were burned.

"This was the first time we have quantified the amount of soot particles emitted by jet engines while burning a 50-50 blend of biofuel in flight," said Rich Moore, lead author of the Nature report.

The trailing aircraft included NASA's HU-25C Guardian jet based at Langley, a Falcon 20-E5 jet owned by the German Aerospace Center (DLR), and a CT-133 jet provided by the National Research Council of Canada.

“Measurements in the wake of aircraft require highly experienced crew members and proven measuring equipment, which DLR has built up over many years,” said report co-author Hans Schlager of the DLR Institute of Atmospheric Physics. “Since 2000, the DLR Falcon has been used in numerous measurement campaigns to investigate the emissions and contrails of commercial airliners.”

Researchers plan on continuing these studies to understand and demonstrate the potential benefits of replacing current fuels in aircraft with biofuels. It’s NASA’s goal to demonstrate biofuels on their proposed supersonic X-plane.

(Images provided with NASA news release)

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Term (08.20.17): Maximum Authorized Altitude

Maximum Authorized Altitude A published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on >[...]

Airborne-Unmanned 08.15.17: Reno Drone Races, DoD CrackDown, Blue Angels v UAV?

Also: Kansas DOT-AirMap, CIRRUAS Drone Program, Daytona Beach PD UAS, Virginia UAS SAR The Reno Air Racing Association has signed an agreement with the MultiGP Drone Racing League >[...]

AMA Drone Report 08.17.17: MULTI-GP Int'l Open, Drone v Chicago, Reno Drone Race

Also: Yuneec Extended Service Plan, UAV on A/C Carrier, Blue Angels Incident, Drone Operator Safety Act MultiGP’s 2017 MultiGP International Open, conducted on the grounds of>[...]

ANN's Daily Aero-Linx (08.21.17)

Aero Linx: Women Military Aviators, Inc. The organization called the Women Military Aviators, Inc. was formed by two groups of women pilots separated by 39 years of history. The fi>[...]

Airborne 08.18.17: NBAA v KSMO, Sully Attacked, DB Cooper Update

Also: New NASA Admin?, Anti-Aviation Hypocrites, Airberlin, Sky Hopper, Drone v Carrier, Jet Aviation, Airman Retires The NBAA joined five other stakeholders to file a brief with t>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2017 Web Development & Design by Pauli Systems, LC