NASA's Car-Sized Rover Nears Daring Landing On Mars | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

AMA Drone Report

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday

Airborne-Thursday

Airborne-Friday

Airborne-Unmanned w/AUVSI

Airborne On ANN

AMA 05.18.17

Airborne
05.22.17

Airborne
05.23.17

Airborne
05.24.17

Airborne
05.25.17

Airborne
05.19.17

Airborne-Unmanned 05.23.17

Airborne-YouTube

AMA 05.18.17

Airborne
05.22.17

Airborne
05.23.17

Airborne
05.24.17

Airborne
05.25.17

Airborne
05.19.17

Airborne-Unmanned 05.23.17

XPONENTIAL Innovation Preview -- www.allthingsunmanned.com

Wed, Jul 18, 2012

NASA's Car-Sized Rover Nears Daring Landing On Mars

Curiosity On Target For Touchdown In Early August

NASA's most advanced planetary rover is on a precise course for an early August landing beside a Martian mountain to begin two years of unprecedented scientific detective work. However, getting the Curiosity rover to the surface of Mars will not be easy.

"The Curiosity landing is the hardest NASA mission ever attempted in the history of robotic planetary exploration," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate, at NASA Headquarters in Washington. "While the challenge is great, the team's skill and determination give me high confidence in a successful landing."

The Mars Science Laboratory (MSL) mission is a precursor mission for future human mission to Mars. President Obama has set a challenge to reach the Red Planet in the 2030s. To achieve the precision needed for landing safely inside Gale Crater, the spacecraft will fly like a wing in the upper atmosphere instead of dropping like a rock. To land the 1-ton rover, an air-bag method used on previous Mars rovers will not work. Mission engineers at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., designed a "sky crane" method for the final several seconds of the flight. A backpack with retro-rockets controlling descent speed will lower the rover on three nylon cords just before touchdown.

During a critical period lasting only about seven minutes, the MSL spacecraft carrying Curiosity must decelerate from about 13,200 mph to allow the rover to land on the surface at about 1.7 mph. Curiosity is scheduled to land at approximately 0131 EDT Aug. 6. "Those seven minutes are the most challenging part of this entire mission," said Pete Theisinger, JPL's  MSL project manager. "For the landing to succeed, hundreds of events will need to go right, many with split-second timing and all controlled autonomously by the spacecraft. We've done all we can think of to succeed. We expect to get Curiosity safely onto the ground, but there is no guarantee. The risks are real."

During the initial weeks after the actual landing, JPL mission controllers will put the rover through a series of checkouts and activities to characterize its performance on Mars while gradually ramping up scientific investigations. Curiosity then will begin investigating whether an area with a wet history inside Mars' Gale Crater ever has offered an environment favorable for microbial life. "Earlier missions have found that ancient Mars had wet environments," said Michael Meyer, lead scientist for NASA's Mars Program at NASA Headquarters. "Curiosity takes us the next logical step in understanding the potential for life on Mars."

Curiosity will use tools on a robotic arm to deliver samples from Martian rocks and soils into laboratory instruments inside the rover that can reveal chemical and mineral composition. A laser instrument will use its beam to induce a spark on a target and read the spark's spectrum of light to identify chemical elements in the target.

Other instruments on the car-sized rover will examine the surrounding environment from a distance or by direct touch with the arm. The rover will check for the basic chemical ingredients for life and for evidence about energy available for life. It also will assess factors that could be hazardous for life, such as the radiation environment.

"For its ambitious goals, this mission needs a great landing site and a big payload," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters. "During the descent through the atmosphere, the mission will rely on bold techniques enabling use of a smaller target area and a heavier robot on the ground than were possible for any previous Mars mission. Those techniques also advance us toward human-crew Mars missions, which will need even more precise targeting and heavier landers." The chosen landing site is beside a mountain informally called Mount Sharp. The mission's prime destination lies on the slope of the mountain. Driving there from the landing site may take many months.

"Be patient about the drive. It will be well worth the wait and we are apt to find some targets of interest on the way," said John Grotzinger, MSL project scientist at the California Institute of Technology in Pasadena. "When we get to the lower layers in Mount Sharp, we'll read them like chapters in a book about changing environmental conditions when Mars was wetter than it is today."

(Images provided by NASA. Lower image shows projected landing area.)

FMI: www.nasa.gov

Advertisement

More News

AMA Drone Report 05.18.17: Drone-Jumping!, AMA Sightings Report, King Schools

Also: DJI Smart TV App, Huerta: Unmanned Aircraft 'Good News Story', XPONENTIAL Innovation Preview Ya had to see it to believe it... An ingenious Latvian UAS operation has pulled o>[...]

Airborne-Unmanned 05.23.17: Courts Nix Model Regs, Autonymous Flt, WATT 300

Also: King Schools Update, Kittyhawk APP, Robird And Integrated Drone Solutions, ICAO Drone Tracking The unmanned community got a bit of a jolt late last week when the US Court of >[...]

Airborne 05.24.17: Snowbird Update, New K-MAX, Spirit Pilots Express 'Regret'

Also: Kyle Franklin, FAA’s Earl Lawrence, SpaceX, Citation Longitude, ACSS ODA, Embraer JetWave, Boeing-Saudi As previously reported, the Canadian Snowbirds precision demonst>[...]

Airborne 05.23.17: Icon A5 NTSB Report, Product Certification, GE9X Testing

Also: UAL Cockpit Doors, NAHI 2017, Drone Database, Manual Flying Skills, Heli-Theft, Runway Extension, New SecAF The NTSB has released its preliminary report from an accident invo>[...]

Airborne 05.24.17: Snowbird Update, New K-MAX, Spirit Pilots Express 'Regret'

Also: Kyle Franklin, FAA’s Earl Lawrence, SpaceX, Citation Longitude, ACSS ODA, Embraer JetWave, Boeing-Saudi As previously reported, the Canadian Snowbirds precision demonst>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2017 Web Development & Design by Pauli Systems, LC