DARPA Hypersonic Vehicle Splash Down Confirmed | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Aug 24, 2011

DARPA Hypersonic Vehicle Splash Down Confirmed

Flight 1 Engineering Changes Believed Effective

During a test flight Thursday, 11 August, DARPA's Falcon HTV-2 scramjet powered aircraft experienced a flight anomaly post perigee and into the vehicle's climb. The anomaly prompted the vehicle's autonomous flight safety system to use the craft's aerodynamic systems to make a controlled descent and splash down into the ocean, according to a DARPA news release. Controlled descent is a term typically associated with a human-in-the-loop directing or guiding the unscheduled landing of an aircraft. For DARPA's Hypersonic Technology Vehicle 2 (HTV-2) controlled descent takes on new meaning thanks to the vehicle's safety system.

"We've confirmed that the HTV-2 made impact with the Pacific Ocean along its flight trajectory as planned in the event of an anomaly," explained Air Force Maj. Chris Schulz, DARPA HTV-2 program manager and PhD in aerospace engineering. "This flight safety system is a significant engineering advance in that the system prompts a vehicle to monitor the parameters under which it is operating and exercise safety protocols completely autonomously should those parameters be breached."

"According to a preliminary review of the data collected prior to the anomaly encountered by the HTV-2 during its second test flight," said DARPA Director Regina Dugan, "HTV-2 demonstrated stable aerodynamically controlled Mach 20 hypersonic flight for approximately three minutes. It appears that the engineering changes put into place following the vehicle's first flight test in April 2010 were effective. We do not yet know the cause of the anomaly for Flight 2."

A detailed analysis conducted by an independent Engineering Review Board following the first flight test, prompted engineers to adjust the vehicle's center of gravity, decrease the angle of attack flown and use the onboard reaction control systems to augment vehicle flaps during the vehicle's second flight test. Those changes appear to have been effective. "An initial assessment indicates," said Schulz, "that the Flight 2 anomaly is unrelated to the Flight 1 anomaly."

FMI: www.darpa.mil

Advertisement

More News

ANN's Daily Aero-Term (04.20.24): Light Gun

Light Gun A handheld directional light signaling device which emits a brilliant narrow beam of white, green, or red light as selected by the tower controller. The color and type of>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.21.24)

Aero Linx: JAARS, Inc. For decades now, we’ve landed planes on narrow rivers and towering mountains. We’ve outfitted boats and vehicles to reach villages that rarely se>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

ANN's Daily Aero-Term (04.21.24): Aircraft Conflict

Aircraft Conflict Predicted conflict, within EDST of two aircraft, or between aircraft and airspace. A Red alert is used for conflicts when the predicted minimum separation is 5 na>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC