NASA Mars Spacecraft Detects Large Changes In Martian Sand Dunes | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

Monday

Tuesday

Wednesday

Thursday

Friday

Airborne On ANN

Oshkosh Day One

Oshkosh Day Two

Oshkosh Day Three

Oshkosh Day Four

Oshkosh Day Five

Airborne Hi-Def On YouTube

Oshkosh Day One

Oshkosh Day Two

Oshkosh Day Three

Oshkosh Day Four

Oshkosh Day Five

Tweet Us The Coolest Things You See @OSH16!
#OSH16Coolest!

It's Alive!: AirVenture 2016 Innovation Preview on Vimeo!

It's Alive!: AirVenture 2016 Innovation Preview on YouTube!

Mon, May 14, 2012

NASA Mars Spacecraft Detects Large Changes In Martian Sand Dunes

Dune Shifts Similar To Those Seen On Earth

NASA's Mars Reconnaissance Orbiter (MRO) has revealed that movement in sand dune fields on the Red Planet occurs on a surprisingly large scale, about the same as in dune fields on Earth. This is unexpected because Mars has a much thinner atmosphere than Earth, is only about one percent as dense, and its high-speed winds are less frequent and weaker than Earth's.

For years, researchers debated whether or not sand dunes observed on Mars were mostly fossil features related to past climate, rather than currently active. In the past two years, researchers using images from MRO's High Resolution Imaging Science Experiment (HiRISE) camera have detected and reported sand movement. Now, scientists using HiRISE images have determined that entire dunes as thick as 200 feet are moving as coherent units across the Martian landscape. The study was published online today by the journal Nature.

"This exciting discovery will inform scientists trying to better understand the changing surface conditions of Mars on a more global scale," said Doug McCuistion, director of NASA's Mars Exploration Program in Washington. "This improved understanding of surface dynamics will provide vital information in planning future robotic and human Mars exploration missions."

Researchers analyzed before-and-after images using a new software tool developed at the California Institute of Technology (Caltech) in Pasadena. The tool measured changes in the position of sand ripples, revealing the ripples move faster the higher up they are on a dune. The study examined images taken in 2007 and 2010 of the Nili Patera sand dune field located near the Martian equator. By correlating ripples' movement to their position on the dune, the analysis determined the entire dunes are moving. This allows researchers to estimate the volume, or flux, of moving sand. "We chose Nili Patera because we knew there was sand motion going on there, and we could quantify it," said Nathan Bridges, a planetary scientist at Johns Hopkins University Applied Physics Laboratory in Laurel, Md., and lead author of the Nature paper. "The Nili dunes also are similar to dunes in places like Antarctica and to other locations on Mars."

The study adds important information about the pace at which blowing sand could be actively eroding rocks on Mars. Using the new information about the volume of sand that is moving, scientists estimate rocks in Nili Patera would be worn away at about the same pace as rocks near sand dunes in Antarctica, where similar sand fluxes occur. "Our new data shows wind activity is indeed a major agent of evolution of the landscape on Mars," said Jean-Philippe Avouac, Caltech team leader. "This is important because it tells us something about the current state of Mars and how the planet is working today, geologically."

Scientists calculate that if someone stood in the Nili Patera dunes and measured out a one-yard width, they would see more than two cubic yards of sand pass by in an Earth year, about as much as in a children's sand box. "No one had estimates of this flux before," said Bridges. "We had seen with HiRISE that there was dune motion, but it was an open question how much sand could be moving. Now, we can answer that."

Scientists will use the information to understand broader mysteries on Mars, like why so much of the surface appears heavily eroded, how that occurred, and whether it is a current process or it was done in the past. Scientists can now point to sand flux as a mechanism capable of creating significant erosion today on the Red Planet.

FMI: www.nasa.gov/mro

Advertisement

More News

Airborne 07.27.16-Oshkosh Day 3: WomenVenture!, NTSB on Part 23, CAF Update

Also: An American Airbus Flies To Oshkosh, Mooney Update, Comprehensive Jack Pelton Interview--Part 3 ANN’s Maxine Scheer attended the kickoff event to WomenVenture, the Wome>[...]

Airborne 07.27.16-Oshkosh Day 3: WomenVenture!, NTSB on Part 23, CAF Update

Also: An American Airbus Flies To Oshkosh, Mooney Update, Comprehensive Jack Pelton Interview--Part 3 ANN’s Maxine Scheer attended the kickoff event to WomenVenture, the Wome>[...]

The Airplane Factory Presents AirVenture 2016 Special Event Coverage

The Airplane Factory Sling – Best-Handling LSA – A Real Airplane The Airplane Factory Sling is a high performance, 2 place Light Sport Aircraft that fits the needs of p>[...]

Aspen Avionics, True Innovators, Present OSH2016 Special Event Coverage!

OSH2016 Sponsor: Always-Innovative Aspen Avionics Based in Albuquerque, New Mexico, Aspen Avionics specializes in bringing the most advanced display and sensor technology from the >[...]

Only Sporty's!!! Sporty's Pilot Shop Helps ANN Cover Oshkosh 2016!

Sporty's Pilot Shop Is A Pivotal GA Resource! Sporty’s Pilot Shop was founded over 50 years ago by a flight instructor, and ever since has been for pilots and by pilots. Hal >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2016 Web Development & Design by Pauli Systems, LC