NASA One Step Closer To First Orion Flight Test | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

** Airborne 07.25.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.25.14 **
** Airborne 07.23.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.23.14 **
** Airborne 07.21.14--CLICK HERE! ** HD iPad-Friendly Version--Airborne 07.21.14 **

Sat, Jan 24, 2009

NASA One Step Closer To First Orion Flight Test

Dummy Crew Launch Vehicle Will Fly Atop Ares I-X Test

NASA is one step closer to the first flight test of the rocket that will send humans on their way to the moon as part of the agency's Constellation Program. Rocket hardware critical for the test, known as Ares I-X, was completed this week at NASA's Langley Research Center in Hampton, VA.

The flight of Ares I-X will be an important step toward verifying analysis tools and techniques needed to develop Ares I, NASA's next crew launch vehicle.

The Langley-designed and built hardware is engineered to represent the Orion crew module and a launch abort system that increases crew safety. In late January, the rocket elements will be shipped from Langley to NASA's Kennedy Space Center in Florida. This hardware and other elements from around the country will be integrated into the Ares I-X rocket, the first in a series of unpiloted test vehicles.

The test launch is scheduled to lift off from Kennedy during the summer of 2009. It will climb about 25 miles in altitude during a two-minute powered flight, continuously measuring vehicle aerodynamics, controls and performance of the rocket's first stage. The launch will culminate with a test of the separation of the first stage from the rocket and deployment of the accompanying parachute system that will return the first stage to Earth for data and hardware recovery.

"This launch will tell us what we got right and what we got wrong in the design and analysis phase," said Jonathan Cruz, deputy project manager at Langley for the Ares I-X crew module and launch abort system. "We have a lot of confidence, but we need those two minutes of flight data before NASA can continue to the next phase of rocket development."

The simulated crew module and launch abort system will complete the nose of the rocket. About 150 sensors on the hardware will measure aerodynamic pressure and temperature at the nose of the rocket and contribute to measurements of vehicle acceleration and angle of attack. The data will help NASA understand whether the design is safe and stable in flight, a question that must be answered before astronauts begin traveling into orbit and beyond.

To ensure the rocket's flight characteristics are understood fully, extreme care was taken to fabricate the simulated crew module and launch abort tower precisely. To compare flight results with preflight predictions confidently, these full-scale hardware components needed to be accurate reflections of the shape and physical properties of the models used in computer analyses and wind tunnel tests.

The simulated crew module is a full-scale representation of the vehicle that will ferry astronauts to the International Space Station by 2015, to the moon in the 2020s and, ultimately, to points beyond. The conical module has the same basic shape as the Apollo module but, at approximately five meters in diameter, is significantly larger. The launch abort system simulator is 46 feet in length. It will fit over the crew module and tower above it, forming the nose of the rocket.

Researchers and managers at Langley worked to overcome multiple challenges as the Orion crew module and launch abort system simulators took shape. One team performed fabrication and assembly work in conjunction with an off-site contractor, and another team installed the sensors once the crew module and launch abort tower were completed.

"We are a highly matrixed team -- a lot of people from various organizations -- that had to work together successfully on a tight schedule," said Kevin Brown, project manager at Langley for the Ares I-X crew module and launch abort system project.

FMI: www.nasa.gov/constellation

Advertisement

More News

EAA AirVenture 2014 Welcomes The Boldest Human Space Mission Yet

Events To Highlight Industry Collaboration For Reaching The Planet Mars Leaders from the aerospace community held a press conference at EAA AirVenture on Monday to get the word out>[...]

Aspen Avionics, True Innovators, Present Oshkosh 2014 Special Event Coverage!

OSH2014 Sponsor: Aspen Avionics Aspen Avionics specializes in bringing the most advanced technology and capability into general aviation cockpits. Our products increase situational>[...]

Futuristic OSH2014 Sponsor: 'Beyond The Blue' - The Inside Story Of The XPRIZE

Meet Jim Campbell, TODAY/07.28, At EAA Wearhouse, Author's Corner, At 1500 And Get Your Signed Copy of Beyond The Blue!!! To Aviation Journalist and experienced Test Pilot, Jim Cam>[...]

Ready For Service... ConciAir Helps Present OSH2014!

ConciAir Is Here To Return Our Industry To Service! The name ConciAir is a play on the word "concierge", and our goal is to be able to accomplish any task placed before us in a tim>[...]

OSH2014 Sponsor: Eclipse Aerospace -- In Full Production!

The Eclipse 550: Economical. Efficient. Incredible. The Eclipse 550 not only has the lowest acquisition cost of any twin-engine jet on the planet, it also has the lowest operating >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2014 Web Development & Design by Pauli Systems, LC