First Flight: X-50A Takes Wing(s) | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Dec 05, 2003

First Flight: X-50A Takes Wing(s)

Revolutionary Boeing Canard Rotor/Wing Aircraft Begins Flight Testing

Nearly 100 years after the dawn of powered flight, a new generation of high-speed, unmanned air vehicle successfully has began flight testing. The Boeing Company’s Canard Rotor/Wing (CRW) concept demonstrator completed its first hover flight at the U.S. Army Proving Ground in Yuma, Ariz.

During the flight test, the CRW advanced technology demonstrator – known as the X-50A Dragonfly – flew for about 80 seconds at 8:10 a.m. MST, December 3rd, 2003. It lifted off vertically from the launch site to an altitude of 12 feet above the ground, hovered and then vertically landed, commencing the flight test program.

Under joint development by Boeing and DARPA (Defense Advanced Research Projects Agency), the CRW is a revolutionary aircraft that combines the speed and range of a fixed-wing aircraft with the flexibility of rotary-wing flight. This is because the CRW’s rotor is designed not only to spin during vertical takeoffs and landings but also to stop turning during flight and convert to a fixed wing for high-speed cruise.

“Today’s successful hover flight was an exciting first step toward meeting the goal of this flight test program,” said Gary Gallagher, CRW Systems senior manager for the Boeing Phantom Works advanced research and development unit. “The ultimate objective is demonstrating the Dragonfly’s ability to convert from rotary-wing to fixed-wing and back to rotary-wing flight.”

About a dozen flight tests are scheduled for the X-50A Dragonfly. Under the remote control of a pilot in the ground station cockpit, the vehicle will gradually perform more extensive hover flights, then forward moving rotary-wing flights, and finally a conversion to a fixed-wing flight and back again to a rotary-wing landing. Two such conversion flights are planned.

The X-50A Dragonfly vehicle is 17.7 feet long and 6.5 feet high and weighs 1,460 pounds. In addition to its 12-foot-diameter rotor/wing, it also has an 8.9-foot-span canard and an 8.1-foot-span horizontal tail. It is propelled by a conventional turbofan engine combined with The Boeing Company’s unique reaction drive rotor system.

During rotary-wing flight, the engine’s exhaust is diverted by the reaction drive system through the rotor system to exit through small nozzles in the rotor tips. As forward speed increases and the canard and tail pick up the aerodynamic load of the aircraft, the exhaust is gradually diverted completely through a nozzle at the back of the aircraft, propelling it even faster forward and allowing the rotor to stop and lock into place for fixed-wing flight. The reverse then occurs for conversion back to rotary-wing flight.

Gallagher explained that the CRW reaction drive rotor system eliminates the need for the traditional mechanical transmission, drive train and anti-torque device. “Reaction drive makes the CRW much lighter, simpler and more affordable to operate and support than traditional rotorcraft.” Its greater speed, range and flight-mode flexibility will make it suitable for a wider range of missions.

Further expanding CRW’s flexibility and versatility is the fact that it can be scaled for both manned and unmanned applications. As an unmanned air vehicle, the CRW would be able to perform such missions as reconnaissance, communications and data relay. In a manned configuration, it would be ideal for armed escort, command and control, logistics re-supply and medical evacuation.

“The CRW is truly a transformational aircraft for the 21st century,” Gallagher said. “Boeing is proud to be working with DARPA to bring our war fighters this exceptional new capability.”

The CRW is being developed by the Boeing Phantom Works, which is the advanced R&D unit and catalyst of innovation for the Boeing enterprise. By working with the company's business units, it provides advanced solutions and innovative, breakthrough technologies that reduce cycle time and cost while improving the quality and performance of aerospace products and services.

Phantom Works and DARPA have been developing the CRW concept under a 50-50 cost share agreement since May 1998.

FMI: www.boeing.com

Advertisement

More News

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

Airborne 04.09.24: SnF24!, Piper-DeltaHawk!, Fisher Update, Junkers

Also: ForeFlight Upgrades, Cicare USA, Vittorazi Engines, EarthX We have a number of late-breaking news highlights from the 2024 Innovation Preview... which was PACKED with real ne>[...]

Aero-News: Quote of the Day (04.14.24)

“For Montaer Aircraft it is a very prudent move to incorporate such reliable institution as Ocala Aviation, with the background of decades in training experience and aviation>[...]

ANN's Daily Aero-Term (04.14.24): Maximum Authorized Altitude

Maximum Authorized Altitude A published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC