Cassini Discovers Saturn's Dynamic Clouds Run Deep | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Sep 07, 2005

Cassini Discovers Saturn's Dynamic Clouds Run Deep

A Varied Pattern Of Weather

Cassini scientists have discovered an unexpected menagerie of clouds lurking in the depths of Saturn's complicated atmosphere.


 
"Unlike the hazy, broad, global bands of clouds regularly seen in Saturn's upper atmosphere, many of the deeper clouds appear to be isolated, localized features," said Dr. Kevin H. Baines, a member of the visual and infrared mapping spectrometer team from NASA's Jet Propulsion Laboratory, Pasadena, CA. "They come in a large variety of sizes and shapes, including circular and oval shapes, donut shapes, and swirls."

These clouds are deep in the atmosphere, about 19 miles underneath the upper clouds usually seen on Saturn. They also behave differently from those in the upper atmosphere and are made of different materials. They are made of either ammonium hydrosulfide or water, but not ammonia -- generally thought to comprise the upper clouds.

Scientists are using the motions of these clouds to understand the dynamic weather of Saturn's deep atmosphere and get a three-dimensional global circulation picture of Saturn. They have mapped low-altitude winds over nearly the entire planet. Comparing these winds to the winds at higher altitudes has led them to conclude that substantial wind shears exist at Saturn's equator. These shears are similar to wind shear observed by Galileo at Jupiter, indicating that similar processes occur on both planets. The new wind speeds measured by the mapping spectrometer shows that winds blow about 170 miles per hour faster deeper down than in the upper atmosphere.

Besides the donut-shaped and other localized cloud systems, dozens of planet girdling lanes of clouds also appear in the new images. Such lanes -- known as "zones"-- are commonly seen in the upper clouds of Saturn and the other large planets. However, these deeper-level lanes are surprisingly narrow and more plentiful than seen elsewhere, including the upper clouds of Saturn. They also have a much more thread-like structure than normally seen in Jupiter or Saturn's upper atmosphere, with many of the thread-like structures and swirls connected to discrete cloud "cells," which look like convective cells on Earth.

The visual and infrared mapping spectrometer took high-resolution, near-infrared images of the deep clouds during four close passes of Saturn between February and July of this year. The images were at a wavelength seven times greater than visible to the human eye and five times greater than available to the Cassini visual camera.

The scientists used a new technique that allowed them to image the deep clouds silhouetted against the background radiation of heat generated by the planet's interior. Until now, imaging clouds in the depths of Saturn has not been practical since upper-level hazes and clouds obscure the view.

"Instead of using sunlight as the source of radiation for imaging the deep clouds residing underneath the obscuring layer of upper-level clouds, we developed a new technique that uses Saturn's own thermal heat as a source of light," said Baines. "It's like looking down at a well-lit city from an aircraft at night, and seeing the black areas against the city lights, which tells you there is a cloud there blocking the light. Saturn emits its own radiant glow, which looks much like the glow of city lights at night."

Tracking these thermally-backlit clouds for several days enabled the determination of wind speeds at the deepest levels ever measured on Saturn.

"Understanding cloud development in the depths of Saturn will sharpen our understanding of global circulation throughout Saturn and of the major planets," said Baines.

These findings were presented in a news briefing at the 37th Annual Meeting of the Division for Planetary Sciences meeting held this week in Cambridge, England.

FMI: http://saturn.jpl.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.15.24)

Aero Linx: International Flying Farmers IFF is a not-for-profit organization started in 1944 by farmers who were also private pilots. We have members all across the United States a>[...]

Classic Aero-TV: 'No Other Options' -- The Israeli Air Force's Danny Shapira

From 2017 (YouTube Version): Remembrances Of An Israeli Air Force Test Pilot Early in 2016, ANN contributor Maxine Scheer traveled to Israel, where she had the opportunity to sit d>[...]

Aero-News: Quote of the Day (04.15.24)

"We renegotiated what our debt restructuring is on a lot of our debts, mostly with the family. Those debts are going to be converted into equity..." Source: Excerpts from a short v>[...]

Airborne 04.16.24: RV Update, Affordable Flying Expo, Diamond Lil

Also: B-29 Superfortress Reunion, FAA Wants Controllers, Spirit Airlines Pulls Back, Gogo Galileo Van's Aircraft posted a short video recapping the goings-on around their reorganiz>[...]

ANN's Daily Aero-Term (04.16.24): Chart Supplement US

Chart Supplement US A flight information publication designed for use with appropriate IFR or VFR charts which contains data on all airports, seaplane bases, and heliports open to >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC