Astronomers Say Moons Like Earth's Uncommon In Solar System | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Mon, Nov 26, 2007

Astronomers Say Moons Like Earth's Uncommon In Solar System

Most Formed With Planets, Not As Result Of Collision

The next time you take a moonlit stroll... or admire a full, bright-white moon looming in the night sky... you might count yourself lucky, say astronomers at NASA's Jet Propulsion Laboratory.

New observations from NASA's Spitzer Space Telescope (shown below) suggest moons like Earth's -- formed out of tremendous collisions -- are uncommon in the universe, arising at most in only five to 10 percent of planetary systems.

"When a moon forms from a violent collision, dust should be blasted everywhere," said Nadya Gorlova of the University of Florida, Gainesville, lead author of a new study that appeared last week in the Astrophysical Journal. "If there were lots of moons forming, we would have seen dust around lots of stars -- but we didn't."

Scientists believe Earth's moon arose about 30 to 50 million years after our sun was born, and after our rocky planets had begun to take shape. A body as big as Mars is thought to have smacked into an infant Earth, breaking off a piece of its mantle. Some of the resulting debris fell into orbit around Earth, eventually coalescing into the moon we see today. The other moons in our solar system either formed simultaneously with their planet, or were captured by their planet's gravity.

Gorlova and her colleagues looked for the dusty signs of similar smash-ups around 400 stars that are all about 30 million years old -- roughly the age of our sun when Earth's moon formed. They found that only one out of the 400 stars is immersed in the telltale dust. Taking into consideration the amount of time the dust should stick around, and the age range at which moon-forming collisions can occur, the scientists then calculated the probability of a solar system making a moon like Earth's to be at most five to 10 percent.

"We don't know that the collision we witnessed around the one star is definitely going to produce a moon, so moon-forming events could be much less frequent than our calculation suggests," said George Rieke of the University of Arizona, Tucson, a co-author of the study.

In addition, the observations tell astronomers that the planet-building process itself winds down by 30 million years after a star is born. Like our moon, rocky planets are built up through messy collisions that spray dust all around. Current thinking holds that this process lasts from about 10 to 50 million years after a star forms. The fact that Gorlova and her team found only 1 star out of 400 with collision-generated dust indicates that the 30-million-year-old stars in the study have, for the most part, finished making their planets.

"Astronomers have observed young stars with dust swirling around them for more than 20 years now," said Gorlova. "But those stars are usually so young that their dust could be left over from the planet-formation process. The star we have found is older, at the same age our sun was when it had finished making planets and the Earth-moon system had just formed in a collision."

For moon lovers, the news isn't all bad. For one thing, moons can form in different ways. And, even though the majority of rocky planets in the universe might not have moons like Earth's, astronomers believe there are billions of rocky planets out there. Five to 10 percent of billions is still a lot of moons.

Other authors of the paper include: Zoltan Balog, James Muzerolle, Kate Y. L. Su and Erick T. Young of the University of Arizona, and Valentin D. Ivanov of the European Southern Observatory, Chile.

FMI: www.spitzer.caltech.edu/spitzer, www.nasa.gov/spitzer

Advertisement

More News

Classic Aero-TV: The Switchblade Flying Car FLIES!

From 2023 (YouTube Versions): Flying Motorcycle, That Is… "First Flight was achieved under cloudy skies but calm winds. The Samson Sky team, positioned along the runway, wat>[...]

ANN FAQ: Q&A 101

A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]

ANN's Daily Aero-Term (04.12.24): Discrete Code

Discrete Code As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; >[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC