The Sun In 3D | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Jul 07, 2004

The Sun In 3D

New NASA Imagining System Allows View From All Sides

NASA-funded scientists have created the first three- dimensional (3-D) view of massive solar eruptions called Coronal Mass Ejections (CMEs). The result is critical for a complete understanding of CMEs, which, when directed at Earth, may disrupt radio communications, satellites and power systems

The researchers analyzed ordinary two-dimensional images from the joint NASA/European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft in a new way to yield the 3-D images.

"We need to see the structure of CMEs in three dimensions to fully understand their origin and the process that launches them from the sun," said Dr. Thomas Moran of the Catholic University of America, Washington. "Views in three dimensions will help to better predict CME arrival times and impact angles at the Earth," he said.

Moran developed the analysis technique. He is lead author of a paper on this research published today in Science. Dr. Joseph Davila of NASA's Goddard Space Flight Center, Greenbelt (MD), is co-author of the paper.

CMEs are among the most powerful eruptions in the solar system, with billions of tons of electrified gas being blasted from the sun's atmosphere into space at millions of miles (kilometers) per hour.

Researchers believe CMEs are launched when solar magnetic fields become strained and suddenly "snap" to a new configuration, like a rubber band that has been twisted to the breaking point. Complex and distorted magnetic fields travel with the CME cloud and sometimes interact with the Earth's own magnetic field to pour tremendous amounts of energy into the space near the planet.

The magnetic fields are invisible, but because the CME gas is electrified (a plasma), it spirals around the magnetic fields, tracing out their shapes. A view of the CME gas in 3- D therefore gives scientists valuable information on the structure and behavior of the magnetic fields powering it.

The new analysis technique for SOHO data determines the three-dimensional structure of a CME. A sequence of three SOHO Large Angle and Spectrometric Coronagraph (LASCO) images is taken through polarizers at separate angles. The ratio of polarized-to-unpolarized brightness at each pixel is then computed. Based on the way light scatters off electrically charged particles (electrons) in CME plasma, light from the structures at angles closer to the plane-of-the-sun will be more polarized than light from those at angles farther from the plane.

The distance from the plane is computed from the measurements, giving the three-dimensional coordinates of the mean scattering position to construct a view in 3-D. (Light which has an electric field oriented randomly in all directions is unpolarized, while light with an electric field oriented in just one direction is polarized.)

With the technique, the team has confirmed that the structure of Earth-directed (halo) CMEs is an expanding arcade of loops, rather than a bubble or rope-like structure. Although the CME eventually disconnects from the sun, the team also discovered the loops remained connected to the source region for an unexpectedly long time, for at least as long as the CME was visible to the SOHO instrument.

The team learned the technique was previously independently developed and used to study relatively static structures in the solar atmosphere during total solar eclipses. The team believes its method will complement the upcoming Solar Terrestrial Relations Observatory (STEREO) mission. The mission, scheduled for launch in February 2006, will use two widely separated spacecraft to construct 3-D views of CMEs by combining images from the two different vantage points of the twin spacecraft.

FMI: www.gsfc.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.15.24)

Aero Linx: International Flying Farmers IFF is a not-for-profit organization started in 1944 by farmers who were also private pilots. We have members all across the United States a>[...]

Classic Aero-TV: 'No Other Options' -- The Israeli Air Force's Danny Shapira

From 2017 (YouTube Version): Remembrances Of An Israeli Air Force Test Pilot Early in 2016, ANN contributor Maxine Scheer traveled to Israel, where she had the opportunity to sit d>[...]

Aero-News: Quote of the Day (04.15.24)

"We renegotiated what our debt restructuring is on a lot of our debts, mostly with the family. Those debts are going to be converted into equity..." Source: Excerpts from a short v>[...]

Airborne 04.16.24: RV Update, Affordable Flying Expo, Diamond Lil

Also: B-29 Superfortress Reunion, FAA Wants Controllers, Spirit Airlines Pulls Back, Gogo Galileo Van's Aircraft posted a short video recapping the goings-on around their reorganiz>[...]

ANN's Daily Aero-Term (04.16.24): Chart Supplement US

Chart Supplement US A flight information publication designed for use with appropriate IFR or VFR charts which contains data on all airports, seaplane bases, and heliports open to >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC