Simulated Test Flights Prepare For Passenger Aircraft Of The Future | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Tue, Apr 05, 2011

Simulated Test Flights Prepare For Passenger Aircraft Of The Future

Conventional Aircraft Modified And Programmed With Characteristics Of Possible Future Airliner

The German Aerospace Center has been performing flight tests to simulate and study the flight characteristics of large 'flying wing' configurations to prepare for future aircraft designs. These have been tested and evaluated using DLR's ATTAS (Advanced Technologies Testing Aircraft System) research aircraft.


DLR ATTAS Aircraft

Although the pilot is flying an aircraft resembling a small passenger plane, it feels like he is sitting in an aircraft with the fuselage and wings blended into a single entity. In addition to conventional mechanical flight controls, ATTAS is also equipped with an electrical flight control system. This allows the researchers to intervene in the flight control system using special hardware and software and give ATTAS the flight characteristics and performance of an entirely different aircraft.

"With its special control technology, ATTAS can behave like other aircraft while in the air," explains Dirk Leisling, a researcher at the DLR Institute of Flight Systems. "This gives us the opportunity to simulate aircraft that do not even exist yet, and to see where we still need to make improvements."


Artist's Rendering Of Flying Wing Aircraft

First, the aircraft simulation is created using a computer, where a mathematical model defines the dynamic behaviour of the new design. This is transferred to the flight control system of ATTAS. The pilot can then test and evaluate the performance of the new aircraft design first hand under real flight conditions. ATTAS is capable of simulating not only 'standard' airplanes, but aircraft with an entirely different aerodynamic design as well. The 'flying wing' configuration is a very promising concept for future airplanes. Flying wings are aircraft resembling fish such as rays or skate. While ATTAS, like all previous passenger aircraft, consists of a cylindrical fuselage with wings and a tail unit, the configuration simulated in the flight tests has a somewhat triangular fuselage. At the tail, two vertical stabilisers that are tilted slightly outwards replace the conventional combination of a tail fin/rudder and a tailplane/elevator. There are four engines under the additional wing area. "The peculiar shape of the aircraft improves its lift characteristics, which in turn increases efficiency," explains Leisling regarding the advantages of the flying wing. It is no surprise that flying wings have a great chance of becoming the aircraft of the future and are currently the subject of many studies.

The flying wing model used in the DLR tests is based on a design developed as part of the EU project NACRE (New Aircraft Concepts Research). It is a wide-body aircraft designed for long-haul flights and able to accommodate up to 750 passengers. With a length of 65 metres, a height of 19 metres and a span of nearly 100 metres, the maximum take-off weight of the simulated flying wing is roughly 700 tons. Its four engines provide a maximum total thrust of 1425 kilonewtons.


Aircraft Comparison

During the test flights the scientists explored the flight characteristics by examining individual manoeuvres, such as deliberately varying the aircraft attitude. Using a simulated instrument landing system, the pilots tested landing approaches on a virtual runway. Each manoeuvre was followed by an evaluation of the flying wing's handling characteristics, which showed that the flying wing aircraft is difficult to control due to its unusual shape. Only the introduction of an additional control system developed at DLR brought about the desired results. This type of control system prevents the aircraft from responding adversely to pilot inputs by initiating appropriate counter-manoeuvres.

"The flight test confirmed our assumptions," said Leisling about the results. "There is a limit to handling a modern, completely uniquely-shaped aircraft without coordinated flight control laws. We can only achieve the flight characteristics we want by using appropriate computer and control technology."

The preliminary results of theoretical investigations could only be confirmed in a 'tangible' way by carrying out simulations during a real flight test; even high-quality simulations on the ground are limited in this respect. Even after 25 years of service, ATTAS is still of great value to aviation research as a flying simulator.

FMI: www.dlr.de/en

Advertisement

More News

SpaceX to Launch Inversion RAY Reentry Vehicle in Fall

Inversion to Launch Reentry Vehicle Demonstrator Aboard SpaceX Falcon 9 This fall, the aerospace startup Inversion is set to launch its Ray reentry demonstrator capsule aboard Spac>[...]

Aero-News: Quote of the Day (04.23.24)

"We are excited to accelerate the adoption of electric aviation technology and further our journey towards a sustainable future. The agreement with magniX underscores our commitmen>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.20.24)

Aero Linx: OX5 Aviation Pioneers Each year a national reunion of OX5 Aviation Pioneers is hosted by one of the Wings in the organization. The reunions attract much attention as man>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC