NASA Spacecraft Fine Tunes Course for Mars Landing | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Apr 11, 2008

NASA Spacecraft Fine Tunes Course for Mars Landing

Phoenix Lander On Track For May 25 Landing

NASA engineers recently adjusted the flight path of the Phoenix Mars Lander, setting the spacecraft on course for its May 25 landing on the Red Planet.

"This is our first trajectory maneuver targeting a specific location in the northern polar region of Mars," said Brian Portock, chief of the Phoenix navigation team at NASA's Jet Propulsion Laboratory in Pasadena, CA. The mission's two prior trajectory maneuvers, made last August and October, adjusted the flight path of Phoenix to intersect with Mars.

NASA has conditionally approved a landing site in a broad, flat valley informally called "Green Valley." A final decision will be made after NASA's Mars Reconnaissance Orbiter takes additional images of the area this month.

The orbiter's High Resolution Imaging Science Experiment camera has taken more than three dozen images of the area. Analysis of those images prompted the Phoenix team to shift the center of the landing target 13 kilometers (8 miles) southeastward, away from slightly rockier patches to the northwest. Navigators used that new center for planning today's maneuver.

The landing area is an ellipse about 62 miles by about 12 miles (100 kilometers by 20 kilometers). Researchers have mapped more than five million rocks in and around that ellipse, each big enough to end the mission if hit by the spacecraft during landing. Knowing where to avoid the rockier areas, the team has selected a scientifically exciting target that also offers the best chances for the spacecraft to set itself down safely onto the Martian surface.

"Our landing area has the largest concentration of ice on Mars outside of the polar caps. If you want to search for a habitable zone in the arctic permafrost, then this is the place to go," said Peter Smith, principal investigator for the mission, at the University of Arizona, Tucson.

Phoenix will dig to an ice-rich layer expected to lie within arm's reach of the surface. It will analyze the water and soil for evidence about climate cycles and investigate whether the environment there has been favorable for microbial life.

"We have never before had so much information about a Mars site prior to landing," said Ray Arvidson of Washington University in St. Louis. Arvidson is chairman of the Phoenix landing-site working group and has worked on Mars landings since the first successful Viking landers in 1976.

"The environmental risks at landing -- rocks and slopes -- represent the most significant threat to a successful mission. There's always a chance that we'll roll snake eyes, but we have identified an area that is very flat and relatively free of large boulders," said JPL's David Spencer, Phoenix deputy project manager and co-chair of the landing site working group.

Today's trajectory adjustment began by pivoting Phoenix 145 degrees to orient and then fire spacecraft thrusters for about 35 seconds, then pivoting Phoenix back to point its main antenna toward Earth. The mission has three more planned opportunities for maneuvers before May 25 to further refine the trajectory for a safe landing at the desired location.

In the final seven minutes of its flight on May 25, Phoenix must perform a challenging series of actions to safely decelerate from nearly 21,000 kilometers per hour (13,000 mph). The spacecraft will release a parachute and then use pulse thrusters at approximately 914 meters (3,000 feet) from the surface to slow to about 8 kilometers per hour (5 mph) and land on three legs.

"Landing on Mars is extremely challenging. In fact, not since the 1970s have we had a successful powered landing on this unforgiving planet. There's no guarantee of success, but we are doing everything we can to mitigate the risks," said Doug McCuistion, director of NASA's Mars Exploration Program at NASA Headquarters in Washington.

FMI: www.nasa.gov/phoenix, http://phoenix.lpl.arizona.edu

Advertisement

More News

ANN's Daily Aero-Linx (04.15.24)

Aero Linx: International Flying Farmers IFF is a not-for-profit organization started in 1944 by farmers who were also private pilots. We have members all across the United States a>[...]

Classic Aero-TV: 'No Other Options' -- The Israeli Air Force's Danny Shapira

From 2017 (YouTube Version): Remembrances Of An Israeli Air Force Test Pilot Early in 2016, ANN contributor Maxine Scheer traveled to Israel, where she had the opportunity to sit d>[...]

Aero-News: Quote of the Day (04.15.24)

"We renegotiated what our debt restructuring is on a lot of our debts, mostly with the family. Those debts are going to be converted into equity..." Source: Excerpts from a short v>[...]

Airborne 04.16.24: RV Update, Affordable Flying Expo, Diamond Lil

Also: B-29 Superfortress Reunion, FAA Wants Controllers, Spirit Airlines Pulls Back, Gogo Galileo Van's Aircraft posted a short video recapping the goings-on around their reorganiz>[...]

ANN's Daily Aero-Term (04.16.24): Chart Supplement US

Chart Supplement US A flight information publication designed for use with appropriate IFR or VFR charts which contains data on all airports, seaplane bases, and heliports open to >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC