Transformed X-48c Flies Successfully | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Recent Daily Episodes

Episode Date

Monday

Tuesday

Wednesday

Thursday

Friday

Airborne On ANN

Oshkosh Day One

Oshkosh Day Two

Oshkosh Day Three

Oshkosh Day Four

Oshkosh Day Five

Airborne Hi-Def On YouTube

Oshkosh Day One

Oshkosh Day Two

Oshkosh Day Three

Oshkosh Day Four

Oshkosh Day Five

Tweet Us The Coolest Things You See @OSH16!
#OSH16Coolest!

It's Alive!: AirVenture 2016 Innovation Preview on Vimeo!

It's Alive!: AirVenture 2016 Innovation Preview on YouTube!

Wed, Aug 08, 2012

Transformed X-48c Flies Successfully

New Model Modified To Evaluate Low-Speed Stability And Control

The remotely piloted X-48C aircraft successfully flew for the first time Tuesday at Edwards Air Force Base in California's Mojave Desert.

The aircraft, designed by The Boeing Co. and built by Cranfield Aerospace Limited of the United Kingdom, is flying again in partnership with NASA. The new X-48C model, which was formerly the X-48B Blended Wing Body aircraft, was modified to evaluate the low-speed stability and control of a low-noise version of a notional, future Hybrid Wing Body (HWB) aircraft design. The HWB design stems from concept studies being conducted by NASA's Environmentally Responsible Aviation project of future potential aircraft designs 20 years from now.

"We are thrilled to get back in the air to start collecting data in this low-noise configuration," said Heather Maliska, X-48C project manager at NASA's Dryden Flight Research Center. "Our dedicated team has worked hard to get the X-48C off the ground for its first flight and we are excited learning about the stability and control characteristics of this low-noise configuration of the blended wing body."

Primary changes to the C model from the B model, which flew 92 flights at Dryden between 2007 and 2010, were geared to transforming it to an airframe noise-shielding configuration. External modifications included relocating the wingtip winglets inboard next to the engines, effectively turning them into twin tails. The aft deck of the aircraft was extended about 2 feet to the rear. Finally, the project team replaced the X-48B's three 50-pound thrust jet engines with two 89-pound thrust engines.

Because handling qualities of the X-48C will be different from those of the X-48B, the project team developed flight control system software modifications, including flight control limiters to keep the airplane flying within a safe flight envelope. This will enable a stronger and safer prototype flight control system suitable for future full-scale commercial hybrid or blended wing aircraft.  "We are very pleased to begin flight tests of the X-48C," said Mike Kisska, Boeing X-48C project manager. "Working with NASA, we've successfully passed another milestone in our work to explore and validate the aerodynamic characteristics and efficiencies of the blended wing body concept."

Additionally, the upcoming flight experiments with the X-48C will help researchers further develop methods to validate the design's aerodynamics and control laws, including a goal of reducing aerodynamic drag through engine yaw control tests.

During the planned second block of flight testing this fall, NASA will test engine yaw control software incorporated in the X-48C's flight computer. This research will use asymmetric engine thrust to create yaw, or nose left or right movements, for trim and for relatively slow maneuvers. NASA's Aeronautics Research Mission Directorate and Boeing are funding the X-48 technology demonstration research effort, which supports NASA's goals of reduced fuel burn, emissions and noise.

The X-48C retains most dimensions of the B model, with a wingspan just longer than 20 feet, and a weight of about 500 pounds. The aircraft has an estimated top speed of about 140 mph, and a maximum altitude of 10,000 feet. The Air Force Research Laboratory, Dayton, Ohio, also is a member of the project team.

(Image provided by NASA)

FMI: www.aeronautics.nasa.gov

Advertisement

More News

AutoGyro Introduces Type Certified Gyroplanes In The U.S.

Two Versions Of The Calidus Gyroplane FAA Approved The FAA has type-certified two versions of the German-built Calidus Gyroplane after the recent completion of conformity testing c>[...]

SPA Introduces Their 3.3 Liter Corvair Conversion

'Engine In Box' Option Allows Quicker Competition Times For Builders In the North Aircraft display area, Dan and Rachel Weseman of Sport Performance Aviation LLC debuted their late>[...]

Avidyne Makes Innovative Use Of IFD Series With iPads

Provide Interesting Big Glass Solutions For Both Forward Fit And Retrofit Avidyne is showcasing some innovative ‘Big Glass’ configurations in their booth at Oshkosh thi>[...]

Wipaire Helps ANN Make AirVenture Coverage Happen!

Wipaire Is A Leading Aircraft Service Provider, and the Holder Of Over 100 STCs For over 55 years, Wipaire has been engineering and manufacturing a full line of aircraft floats for>[...]

Airborne 07.26.16-Oshkosh Day 2: Solar Impulse, Sun Flyer, Stemme S-12

Also: AEA $$Giveaway$$, LAM Aviation, Able Flight, Jack Pelton On Aero-Medical Reform We start our report this morning with something that has very little to do with the EAA AirVen>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2016 Web Development & Design by Pauli Systems, LC