NASA Dryden Evaluates Combat Synthetic Aperture Radar | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Nov 28, 2007

NASA Dryden Evaluates Combat Synthetic Aperture Radar

UAV-Mounted Sensor May Detect Landslides, Fault Lines

NASA is evaluating a compact L-Band synthetic aperture radar for potential use on unmanned aircraft. The sensor detects and measures small changes in the Earth's surface of geophysical interest, such as volcanoes, earthquake faults, landslides and glaciers.

NASA's Dryden Flight Research Center in Edwards, CA -- along with the Jet Propulsion Laboratory (JPL) in Pasadena -- are working to develop the Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR). A modified NASA Gulfstream III aircraft carries the JPL-developed radar in a custom-built pod under the aircraft's fuselage during its development phase.

"The system is an imaging radar. It is like a camera that uses microwaves to make an image," said Scott Hensley, chief scientist for the UAVSAR project. "It collects data to measure the deformation of the Earth's surface, for example from an earthquake or volcano. This will help us better understand how earthquakes and volcanoes work. The way we do that is through the signatures of how they deform the Earth's surface."

"The UAVSAR is a flying testbed for developing the tools and technologies for future space- based radars," said Robert Smith, UAVSAR program manager for NASA's Earth Science Technology Office. "Once operational, it will also be a powerful airborne instrument providing calibration data and rapidly repeated images scientists need to augment data obtained from satellites."

During these validation flights, the aircraft is using a technique known as repeat pass interferometry that requires the aircraft to fly each pass as close to the original flight line as possible. For the UAVSAR experiment, two data passes, flown from minutes to months apart, are compared to examine changes in the Earth's surface. Flying this technique enables the data collected by the synthetic aperture radar to be converted into surface displacement measurements with a sensitivity equal to a fractional part of the radar wavelength.

To ensure the accuracy of the flight paths, a precision autopilot designed by engineers at Dryden has been installed on the test aircraft. The autopilot guides the aircraft using the differential Global Positioning System and the aircraft's inertial navigation system to repeat the flight path to an accuracy of within 15 feet.

With the precision autopilot engaged, the synthetic aperture radar will be able to acquire repeat pass data that can measure changes with a resolution measured in millimeters.

"We're very pleased with the performance of the Platform Precision Autopilot, and feel confident that this new system, along with the structurally modified G-III aircraft, is ready to fully support UAVSAR interferometry studies," said Frank Cutler, project manager for the Gulfstream III UAVSAR flight testing at NASA Dryden.

During the 1990s scientists used NASA's DC-8 airborne science laboratory to collect data with the airborne synthetic aperture radar
(AIRSAR) system, also developed at JPL. The UAVSAR instrument currently under development has benefited from technology advancements in the 20 years since AIRSAR was built.

The prototype UAVSAR is smaller, fitting into a pod about 10 feet in length. The radar pod is a self-contained instrument package that requires only electrical power from the aircraft. The instrument has its own navigation system consisting of a high-accuracy inertial navigation unit and a differential GPS developed at JPL that provides the aircraft's location to an accuracy of less than three feet. The radar's electronically steered antenna compensates for aircraft attitude changes as the radar makes repeated passes over areas of interest.

The pod also contains a two-terabyte recorder to store the large amounts of data generated by the radar. The pod is designed to operate autonomously by loading commands to the system's computer prior to flight. Along with the autopilot, the design of the pod allows it to be flown on a variety of aircraft, including unmanned aircraft.

The sensor is currently undergoing a one-year development and test period to improve robustness and validate its ability to meet the science objectives. The UAVSAR will be extensively tested through 2008, after which it will become a community science tool for NASA.

NASA's Science Mission Directorate funded development of the UAVSAR.

FMI: http://uavsar.jpl.nasa.gov/index.html, www.dfrc.nasa.gov

Advertisement

More News

Classic Aero-TV: The Switchblade Flying Car FLIES!

From 2023 (YouTube Versions): Flying Motorcycle, That Is… "First Flight was achieved under cloudy skies but calm winds. The Samson Sky team, positioned along the runway, wat>[...]

ANN FAQ: Q&A 101

A Few Questions AND Answers To Help You Get MORE Out of ANN! 1) I forgot my password. How do I find it? 1) Easy... click here and give us your e-mail address--we'll send it to you >[...]

ANN's Daily Aero-Term (04.12.24): Discrete Code

Discrete Code As used in the Air Traffic Control Radar Beacon System (ATCRBS), any one of the 4096 selectable Mode 3/A aircraft transponder codes except those ending in zero zero; >[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC