ATK and NASA Report Initial 30-Day Findings From Development Motor (DM-2) | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Oct 29, 2010

ATK and NASA Report Initial 30-Day Findings From Development Motor (DM-2)

Data Confirm ATK Five Segment Solid Rocket Motor Is Ready For Flight Testing

Data from the second successful five segment Development Motor (DM-2) test conducted by ATK and NASA show that the new motor performed precisely as designed, providing substantially higher performance and reliability than the heritage space shuttle solid rocket booster at a lower cost. "These extensive test results confirm the ATK five segment Solid Rocket Motor (SRM) is ready for flight testing," said Charlie Precourt, vice president and general manager of Space Launch Systems, ATK Aerospace Systems.  "The five-segment first stage design was based on more than 30 years of safety-driven improvements on the shuttle program. The result is a higher performing, more reliable solid rocket motor, which equates to increased safety for crew and mission success for cargo."

The 30-day findings from the August 31 ground test were compared to data collected from the first ground test (Sept. 2009) and the Ares I-X flight test (Oct. 2009) to develop a greater understanding of motor and material performance and first stage avionics. The data were also compared to ground test, flight, and post-flight data collected throughout the Space Shuttle Program.

Modifications to the motor include an added fifth segment, changes to the propellant grain, a larger nozzle opening, and an upgraded liner and insulation — all designed to meet performance requirements and increase reliability while lowering manufacturing costs.

"We were able to incorporate many design changes during the five-segment development that we identified during the shuttle program but were not able to make given the shuttle vehicle's operations tempo," said Precourt. "We also incorporated materials and streamlined processes that have been flight-proven in our commercial programs."

Propellant grain changes included an additional fin to provide the necessary thrust profile at liftoff and changes to propellant angles at joints to increase structural safety factors. The ballistics data from DM-2 were exactly in line with predictions.

The new insulation and liner is made of environmentally-friendly material that replaces the obsolete asbestos-based insulation used on shuttle. Advantages include improved thermal properties and lower density, offering 10 percent or 2,000 pounds in weight savings, which allows for heavier payloads. Process improvements developed with the new green material have also yielded safety and schedule benefits. Results from DM-2 showed the new liner provided higher thermal protection than the shuttle motors. New low-temperature O-rings enabled the elimination of joint heaters and the associated cabling and infrastructure. This lowers joints complexity, thereby eliminating additional failure modes, and saves 500 pounds in weight, while providing a stronger seal than previous O-rings.

A main objective of DM-2 was to test the new O-rings at cold temperatures. The motor was conditioned to approximately 40 degrees F., and flaws were introduced into the joints that allowed hot gases to potentially penetrate the insulation into the joint and thermal protection system where the O-rings are housed. Even under those conditions, the seal and thermal protection system on DM-2 performed as designed. "We are very pleased with the initial data collected from DM-2," said Precourt. "It shows the performance of the motor and components either met or exceeded our predictions."

Thrust oscillation is another area where DM-2 results are significantly better than initial models predicted. Through combined DM-2, DM-1 and Ares I-X results, and with computational fluid dynamics analyses, NASA and ATK engineers have learned the behavior attributed to thrust oscillations in five-segment solid rocket motors is 30 to 60 percent less than previously predicted. Specifically, the DM-1 and DM-2 data indicate that this motor is very quiet, producing very low pressure oscillations.  Also Ares I-X showed that in flight, the overall structure of that configuration is less susceptible to excitation than previously expected.

FMI: www.atk.com, www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.15.24)

Aero Linx: International Flying Farmers IFF is a not-for-profit organization started in 1944 by farmers who were also private pilots. We have members all across the United States a>[...]

Classic Aero-TV: 'No Other Options' -- The Israeli Air Force's Danny Shapira

From 2017 (YouTube Version): Remembrances Of An Israeli Air Force Test Pilot Early in 2016, ANN contributor Maxine Scheer traveled to Israel, where she had the opportunity to sit d>[...]

Aero-News: Quote of the Day (04.15.24)

"We renegotiated what our debt restructuring is on a lot of our debts, mostly with the family. Those debts are going to be converted into equity..." Source: Excerpts from a short v>[...]

Airborne 04.16.24: RV Update, Affordable Flying Expo, Diamond Lil

Also: B-29 Superfortress Reunion, FAA Wants Controllers, Spirit Airlines Pulls Back, Gogo Galileo Van's Aircraft posted a short video recapping the goings-on around their reorganiz>[...]

ANN's Daily Aero-Term (04.16.24): Chart Supplement US

Chart Supplement US A flight information publication designed for use with appropriate IFR or VFR charts which contains data on all airports, seaplane bases, and heliports open to >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC