MESSENGER Spacecraft Reveals More Hidden Territory On Mercury | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Oct 31, 2008

MESSENGER Spacecraft Reveals More Hidden Territory On Mercury

Probe On Track To Orbit Planet In 2011

A NASA spacecraft gliding over the battered surface of Mercury for the second time this year has revealed more previously unseen real estate on the innermost planet. The probe also has produced several science firsts and is returning hundreds of new photos and measurements of the planet's surface, atmosphere and magnetic field.

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging, or MESSENGER, spacecraft flew by Mercury shortly after 4:40 am EDT, on October 6. It completed a critical gravity assist to keep it on course to orbit Mercury in 2011 and unveiled 30 percent of Mercury's surface never before seen by a spacecraft.

"The region of Mercury's surface that we viewed at close range for the first time this month is bigger than the land area of South America," said Sean Solomon, principal investigator and director of the Department of Terrestrial Magnetism at the Carnegie Institution of Washington. "When combined with data from our first flyby and from Mariner 10, our latest coverage means that we have now seen about 95 percent of the planet."

The spacecraft's science instruments operated throughout the flyby. Cameras snapped more than 1,200 pictures of the surface, while topography beneath the spacecraft was profiled with a laser altimeter. The comparison of magnetosphere observations from the spacecraft's first flyby in January with data from the probe's second pass has provided key new insight into the nature of Mercury's internal magnetic field and revealed new features of its magnetosphere. The magnetosphere is the volume surrounding Mercury that is controlled by the planet's magnetic field.

"The previous flybys by MESSENGER and Mariner 10 provided data only about Mercury's eastern hemisphere," explains Brian Anderson of the Johns Hopkins University Applied Physics Laboratory, known as APL, in Laurel, MD. "The most recent flyby gave us our first measurements on Mercury's western hemisphere, and with them we discovered that the planet's magnetic field is highly symmetric."

The probe's Mercury Laser Altimeter, or MLA, measured the planet's topography, allowing scientists, for the first time, to correlate high-resolution topography measurements with high-resolution images.

"The MLA collected altimetry in regions where images from MESSENGER and Mariner 10 data are available, and new images were obtained of the region sampled by the altimeter in January," said Maria Zuber, co-investigator and head of the Department of Earth, Atmospheric, and Planetary Sciences at the Massachusetts Institute of Technology. "These topographic measurements now improve considerably the ability to interpret surface geology."

The Mercury Atmospheric and Surface Composition Spectrometer observed Mercury's thin atmosphere, known as an exosphere. The instrument searched for emissions from sodium, calcium, magnesium, and hydrogen atoms. Observations of magnesium are the first detection of this chemical in Mercury's exosphere. Preliminary analysis suggests that the spatial distributions of sodium, calcium, and magnesium are different. Simultaneous observations of these spatial distributions, also a first for the spacecraft, have opened an unprecedented window into the interaction of Mercury's surface and exosphere.

Spacecraft images also are revealing for the first time vast geologic differences on the surface.

"Now that MESSENGER's cameras have imaged more than 80 percent of Mercury, it is clear that, unlike the moon and Mars, Mercury's surface is more homogeneously ancient and heavily cratered, with large extents of younger volcanic plains lying within and between giant impact basins," said co-investigator Mark Robinson of Arizona State University in Tempe.

The project is the seventh in NASA's Discovery Program of lower-cost, scientifically focused missions.

FMI: www.nasa.gov/messenger

Advertisement

More News

ANN's Daily Aero-Term (04.14.24): Maximum Authorized Altitude

Maximum Authorized Altitude A published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on >[...]

ANN's Daily Aero-Linx (04.14.24)

Aero Linx: Soaring Safety Foundation (SSF) The Soaring Safety Foundation (SSF) is the Training and Safety arm of the Soaring Society of America (SSA). Our mission is to provide ins>[...]

Classic Aero-TV: 'We're Surviving'-- Kyle Franklin Describes Airshow Life 2013

From 2013 (YouTube Version): Dracula Lives On Through Kyle Franklin... and We're NOT Scared! ANN CEO and Editor-in-Chief, Jim Campbell speaks with Aerobatic and airshow master, Kyl>[...]

Aero-News: Quote of the Day (04.14.24)

“For Montaer Aircraft it is a very prudent move to incorporate such reliable institution as Ocala Aviation, with the background of decades in training experience and aviation>[...]

Airborne 04.09.24: SnF24!, Piper-DeltaHawk!, Fisher Update, Junkers

Also: ForeFlight Upgrades, Cicare USA, Vittorazi Engines, EarthX We have a number of late-breaking news highlights from the 2024 Innovation Preview... which was PACKED with real ne>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC