NASA Says Oldest Objects In Universe May Not Be THAT Old | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Tue, Apr 29, 2008

NASA Says Oldest Objects In Universe May Not Be THAT Old

Globular Clusters "Surprisingly Less Mature" Than First Thought

Just when we thought we had the universe figured out... NASA throws us a curveball. Some of the oldest objects in the universe may still have a long way to go, according to a new study using NASA's Chandra X-ray Observatory. These new results indicate that globular clusters might be surprisingly less mature in their development than previously thought.

Globular clusters -- dense bunches of up to millions of stars found in all galaxies -- are among the oldest known objects in the universe, with most estimates of their ages ranging from 9 to 13 billions of years old. As such they contain some of the first stars to form in a galaxy, and understanding their evolution is critical to understanding the evolution of galaxies.

"For many years, globular clusters have been used as wonderful natural laboratories to study the evolution and interaction of stars," said John Fregeau of Northwestern University, who conducted the study. "So, it's exciting to discover something that may be new and fundamental about the way they evolve."

Conventional wisdom is that globular clusters pass through three phases of evolution or development of their structure, corresponding to adolescence, middle age, and old age. These "ages" refer to the evolutionary state of the cluster, not the physical ages of the individual stars.

In the adolescent phase, the stars near the center of the cluster collapse inward. Middle age refers to a phase when the interactions of double stars near the center of the cluster prevent it from further collapse. Finally, old age describes when binaries in the center of the cluster are disrupted or ejected, and the center of the cluster collapses inwards.

For years, it has been thought that most globular clusters are middle-aged with a few being toward the end of their evolution. However, Chandra data, along with theoretical work, suggest most clusters may actually be closer to interstellar adolescence.

"It's remarkable that these objects, which are thought to be some of the oldest in the universe, may really be very immature," said Fregeau, whose paper appears in The Astrophysical Journal. "This would represent a major change in thinking about the current evolutionary status of globular clusters."

If confirmed, this result would help reconcile other observations with recent theoretical work that suggest the tightness of the central concentration of stars in the most evolved globular clusters is consistent with them being in a middle, rather than an advanced phase of evolution. Other theoretical studies have suggested it can take longer than the current age of the universe for globular clusters to reach old age.

Besides improving the understanding of the basic evolution of globular clusters, this result has implications for understanding stellar interactions in dense environments. It also removes the need for exotic mechanisms -- some involving black holes -- that were thought to be needed to prevent the many middle-aged clusters from collapsing.

"Some exotic scenarios, including some of my own, have been invoked to try to make sense of the observations and save the old theory," said Fregeau. "If this result holds up, we don't have to worry about the exotic scenarios any more."

NASA's Marshall Space Flight Center, Huntsville, AL manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, MA.

FMI: http://chandra.harvard.edu, www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.15.24)

Aero Linx: International Flying Farmers IFF is a not-for-profit organization started in 1944 by farmers who were also private pilots. We have members all across the United States a>[...]

Classic Aero-TV: 'No Other Options' -- The Israeli Air Force's Danny Shapira

From 2017 (YouTube Version): Remembrances Of An Israeli Air Force Test Pilot Early in 2016, ANN contributor Maxine Scheer traveled to Israel, where she had the opportunity to sit d>[...]

Aero-News: Quote of the Day (04.15.24)

"We renegotiated what our debt restructuring is on a lot of our debts, mostly with the family. Those debts are going to be converted into equity..." Source: Excerpts from a short v>[...]

Airborne 04.16.24: RV Update, Affordable Flying Expo, Diamond Lil

Also: B-29 Superfortress Reunion, FAA Wants Controllers, Spirit Airlines Pulls Back, Gogo Galileo Van's Aircraft posted a short video recapping the goings-on around their reorganiz>[...]

ANN's Daily Aero-Term (04.16.24): Chart Supplement US

Chart Supplement US A flight information publication designed for use with appropriate IFR or VFR charts which contains data on all airports, seaplane bases, and heliports open to >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC