Boeing Team to Develop Spacecraft Power System for DARPA | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Thu, Jul 02, 2009

Boeing Team to Develop Spacecraft Power System for DARPA

Will Push Self-Deployed Spacecraft From Low To High Orbit And Beyond

Dust off your thinking caps to try to get your brain around this one. An industry team led by Boeing has received a contract from the Defense Advanced Research Projects Agency (DARPA) for work on Phase 2 of the Fast Access Spacecraft Testbed (FAST) program. The $15.5 million cost-plus-fixed-fee contract is currently funded to $13.8 million.

DARPA's FAST program aims to develop a new, ultra-lightweight High Power Generation System (HPGS) that can generate up to 175 kilowatts -- more power than is currently available to the International Space Station. When combined with electric propulsion, FAST will form the foundation for future self-deployed, high-mobility spacecraft to perform ultra-high-power communications, space radar, satellite transfer and servicing missions.

Boeing Phantom Works of Huntington Beach is leading the effort with support from Boeing Network and Space Systems, El Segundo, CA. The Phase 2 work will include designing, fabricating and integrating test articles, performing a series of component-level evaluations and running two full-scale system tests.

"Our team is pleased to partner with DARPA in developing this powerful new technology," said Tom Kessler, FAST program manager, Boeing Advanced Network and Space Systems. "FAST offers significant cost and performance benefits to our commercial, civil and national security customers, including new high-power applications to provide a cost-effective means for spacecraft to travel to the outer solar system."

During Phase 1 of the program, a preliminary design was developed for an HPGS capable of providing more than 130 watts per kilogram on a system that is less than half the weight and one sixth the size of an existing on-orbit solar power system. The Boeing-led team, which includes DR Technologies, Northrop Grumman Astro Aerospace, Texas A&M University, Emcore, and others, also defined the test program being conducted in Phase 2, which will verify the performance and operation of the HPGS's solar concentration, power conversion, heat rejection, structure and deployment, and sun pointing and tracking subsystems.

The Boeing team's solar concentrator design offers higher performance and greater radiation tolerance than current on-orbit solar power generation systems. Boeing will also be using different approaches to solar cell technology to include capabilities from Emcore and Spectrolab.

The size efficiency of the HPGS enables a new class of compact spacecraft that can self-deploy from low-Earth orbit to reach their final orbit using electric propulsion. This permits the use of smaller, less expensive launch vehicles that can support high-value science missions to the outer solar system without the need for expensive radioisotope power systems.

FMI: www.boeing.com

Advertisement

More News

ANN's Daily Aero-Term (04.20.24): Light Gun

Light Gun A handheld directional light signaling device which emits a brilliant narrow beam of white, green, or red light as selected by the tower controller. The color and type of>[...]

Aero-News: Quote of the Day (04.20.24)

"The journey to this achievement started nearly a decade ago when a freshly commissioned Gentry, driven by a fascination with new technologies and a desire to contribute significan>[...]

ANN's Daily Aero-Linx (04.21.24)

Aero Linx: JAARS, Inc. For decades now, we’ve landed planes on narrow rivers and towering mountains. We’ve outfitted boats and vehicles to reach villages that rarely se>[...]

Aero-News: Quote of the Day (04.21.24)

"Our driven and innovative team of military and civilian Airmen delivers combat power daily, ensuring our nation is ready today and tomorrow." Source: General Duke Richardson, AFMC>[...]

ANN's Daily Aero-Term (04.21.24): Aircraft Conflict

Aircraft Conflict Predicted conflict, within EDST of two aircraft, or between aircraft and airspace. A Red alert is used for conflicts when the predicted minimum separation is 5 na>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC