First Flight: Altair UAV | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.22.24

Airborne-Unlimited-04.16.24

Airborne-FlightTraining-04.17.24 Airborne-AffordableFlyers-04.18.24

Airborne-Unlimited-04.19.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Wed, Jun 11, 2003

First Flight: Altair UAV

Designed to Operate From Regular Airports

A milestone in the development of high-altitude, long-endurance, remotely operated aircraft occurred Monday, with the successful flight of NASA's Altair. Altair ("Predator-B") is the first unmanned aerial vehicle (UAV) to feature triple-redundant flight systems and avionics for increased reliability.

The slender-wing aircraft lifted off the runway at General Atomics Aeronautical Systems' Inc. (GA-ASI) flight test facility at El Mirage (CA). The purpose of the historic first flight was to evaluate the UAV's basic airworthiness and flight controls. After the successful test flight, Altair glided to a landing on the remote desert runway. The entire flight was conducted at low altitude within a relatively short range of the El Mirage flight test facility.

UAVs to National Airspace: "See and Avoid" Takes on New Neaning.

"This is what we've been waiting for," said Glenn Hamilton, Altair project manager at NASA's Dryden Flight Research Center (DFRC), Edwards (CA). "Now we can move forward with getting UAVs into the national airspace and conducting research," he said.

Thomas J. Cassidy, president and chief executive officer of San Diego-based GA-ASI, echoed Hamilton's comments. "Altair's first flight is a culmination of 10 years of experience in building reliable unmanned aircraft based on a common design philosophy," Cassidy said. "I am very proud of our design, manufacturing and flight-readiness teams for their dedication to a high performance level of excellence."

Built to performance specifications established by NASA's Earth Science Enterprise, Altair is an extended-wing version of the MQ-9 Predator B (in camo) military UAV being developed under a partnership with GA-ASI. In fact, the military designator is Predator B-ER. NASA, convinced it's a new civilian design, says it is "...one of several UAVs designed for civil applications that have been developed or matured under the Environmental Research Aircraft and Sensor Technology (ERAST) program at DFRC."

After initial airworthiness test flights, Altair will serve as the avionics test aircraft for the production version of the MQ-9 before being transferred to NASA. At DFRC, Altair will first be used to evaluate various new control communications and collision-avoidance technologies that are critical to enabling UAVs to fly safely in national airspace.

Eventually NASA will use Altair for a variety of environmental science missions, such as volcanic observation, forest fire monitoring and atmospheric sampling. The UAV may be ideal for missions that are often too dangerous, difficult or lengthy for manned aircraft, like, for instance, border patrol.

Standard Predator UAVs carry Hellfire missiles (right), for instance, and one was used recently to track down and kill suspected al Qaeda terrorists in Yemen. Using the longer-range, heavier-capacity Altair for such "hunter-killer" missions may well be in the CIA's plans, though we could not get anyone to talk about it.

Designed to fly with the rest of us...

Altair is expected to be the first UAV to meet Federal Aviation Administration requirements to operate from conventional airports, with piloted aircraft, in the national airspace. In addition to triple-redundant avionics, Altair is configured with a fault-tolerant, dual-architecture flight control system. The UAV will be equipped with an automated collision-avoidance system and an air traffic control voice relay. The relay allows air-traffic controllers to talk to ground-based Altair pilots through the aircraft.

Command and control of the Altair, as well as research data gathered by the UAV, will be transmitted through an "over the horizon" satellite link. The link will also allow scientists to receive research information as soon as Altair obtains it.

Don't expect to see standard Predator running gear: this baby has 700 hp.

Altair has been designed to fly continuously for up to 32 hours. It can reach an altitude of approximately 52,000 feet and has a maximum range of about 4,200 miles. Altair can carry up to 750 pounds of sensors, radar, communications and imaging equipment in its forward fuselage. The Altair is 34 feet long, with a wingspan of 86 feet, 22 feet more wing than Predator B. A 700 horsepower, rear-mounted turboprop engine powers Altair with a three-blade controllable-pitch propeller. NASA and GA-ASI are jointly funding development of the Altair and Predator B prototypes under the ERAST program. GA-ASI built Altair's predecessor, the Altus 2.

FMI: www.dfrc.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.17.24)

Aero Linx: Space Medicine Association (SMA) The Space Medicine Association of the Aerospace Medical Association is organized exclusively for charitable, educational, and scientific>[...]

ANN's Daily Aero-Term (04.17.24): Jamming

Jamming Denotes emissions that do not mimic Global Navigation Satellite System (GNSS) signals (e.g., GPS and WAAS), but rather interfere with the civil receiver's ability to acquir>[...]

ANN's Daily Aero-Linx (04.18.24)

Aero Linx: Warbirds of America The EAA Warbirds of America, a division of the Experimental Aircraft Association in Oshkosh, Wisconsin, is a family of owners, pilots and enthusiasts>[...]

Aero-News: Quote of the Day (04.18.24)

"From New York to Paris, this life-size replica of the Webb Telescope inspired communities around the world and, in doing so, invited friends and families to explore the cosmos tog>[...]

ANN's Daily Aero-Term (04.18.24): Hold-In-Lieu Of Procedure Turn

Hold-In-Lieu Of Procedure Turn A hold-in-lieu of procedure turn shall be established over a final or intermediate fix when an approach can be made from a properly aligned holding p>[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC