Spacecraft Reveals New Insights About Solar Wind Origins | Aero-News Network
Aero-News Network
RSS icon RSS feed
podcast icon MP3 podcast
Subscribe Aero-News e-mail Newsletter Subscribe

Airborne Unlimited -- Most Recent Daily Episodes

Episode Date

Airborne-Monday

Airborne-Tuesday

Airborne-Wednesday Airborne-Thursday

Airborne-Friday

Airborne On YouTube

Airborne-Unlimited-04.01.24

Airborne-Unlimited-04.09.24

Airborne-Unlimited-04.10.24 Airborne-Unlimited-04.11.24

Airborne-Unlimited-04.12.24

Join Us At 0900ET, Friday, 4/10, for the LIVE Morning Brief.
Watch It LIVE at
www.airborne-live.net

Fri, Dec 07, 2007

Spacecraft Reveals New Insights About Solar Wind Origins

Hinode Satellite Sheds New Light On Alfven Waves

Images from NASA-funded telescopes aboard a Japanese satellite have shed new light about the sun's magnetic field and the origins of solar wind, which disrupts power grids, satellites and communications on Earth.

Data from the Hinode satellite shows that magnetic waves play a critical role in driving the solar wind into space. The solar wind is a stream of electrically charged gas that is propelled away from the sun in all directions at speeds of almost 1 million miles per hour. Better understanding of the solar wind may lead to more accurate prediction of damaging radiation waves before they reach satellites.

The findings of the American-led international research teams appear in the December 7 issue of the journal Science.

How the solar wind is formed and powered has been the subject of debate for decades. Powerful magnetic Alfven waves in the electrically charged gas near the sun have always been a leading candidate as a force in the formation of solar wind since Alfven waves in principle can transfer energy from the sun's surface up through its atmosphere, or corona, into the solar wind.

In the solar atmosphere, Alfven waves are created when convective motions and sound waves push magnetic fields around, or when dynamic processes create electrical currents that allow the magnetic fields to change shape or reconnect.

"Until now, Alfven waves have been impossible to observe because of limited resolution of available instruments," said Alexei Pevtsov, Hinode program scientist, NASA Headquarters, Washington. "With the help of Hinode, we are now able to see direct evidence of Alfven waves, which will help us unravel the mystery of how the solar wind is powered."

Using Hinode's high resolution X-ray telescope, a team led by Jonathan Cirtain, a solar physicist at NASA's Marshall Space Flight Center, Huntsville, AL was able to peer low into the corona at the sun's poles and observe record numbers of X-ray jets. The jets are fountains of rapidly moving hot plasma. Previous research detected only a few jets daily.

With Hinode's higher sensitivity, Cirtain's team observed an average of 240 jets per day. They conclude that magnetic reconnection, a process where two oppositely charged magnetic fields collide and release energy, is frequently occurring in the low solar corona. This interaction forms both Alfven waves and the burst of energized plasma in X-ray jets.

"These observations show a clear relationship between magnetic reconnection and Alfven wave formation in the X-ray jets." said Cirtain. "The large number of jets, coupled with the high speeds of the outflowing plasma, lends further credence to the idea that X-ray jets are a driving force in the creation of the fast solar wind."

Another research team led by Bart De Pontieu, a solar physicist at Lockheed Martin's Solar and Astrophysics Laboratory, Palo Alto, CA, focused on the sun's chromosphere, the region sandwiched between the solar surface and its corona. Using extremely high-resolution images from Hinode's Solar Optical Telescope, De Pontieu's team found that the chromosphere is riddled with Alfven waves. When the waves leak into the corona, they are strong enough to power the solar wind.

"We find that most of these Alfven waves have periods of several minutes, much longer than many theoretical models have assumed in the past," says De Pontieu.

Comparisons with advanced computer simulations from the University of Oslo, Norway, indicate that reconnection is not the only source of the Alfven waves. "The simulations imply that many of the waves occur when the sun's magnetic field is jostled around by convective motions and sound waves in the low atmosphere," continued De Pontieu.

Hinode was launched in September 2006 to study the sun's magnetic field and how its explosive energy propagates through the different layers of the solar atmosphere. It is a collaborative mission with NASA and the space agencies of Japan, the United Kingdom, Norway and Europe and Japan's National Astronomical Observatory.

FMI: www.nasa.gov

Advertisement

More News

ANN's Daily Aero-Linx (04.13.24)

Aero Linx: Florida Antique Biplane Association "Biplanes.....outrageous fun since 1903." That quote really defines what the Florida Antique Biplane Association (FABA) is all about.>[...]

ANN's Daily Aero-Term (04.13.24): Beyond Visual Line Of Sight (BVLOS)

Beyond Visual Line Of Sight (BVLOS) The operation of a UAS beyond the visual capability of the flight crew members (i.e., remote pilot in command [RPIC], the person manipulating th>[...]

Airborne 04.09.24: SnF24!, Piper-DeltaHawk!, Fisher Update, Junkers

Also: ForeFlight Upgrades, Cicare USA, Vittorazi Engines, EarthX We have a number of late-breaking news highlights from the 2024 Innovation Preview... which was PACKED with real ne>[...]

Aero-News: Quote of the Day (04.14.24)

“For Montaer Aircraft it is a very prudent move to incorporate such reliable institution as Ocala Aviation, with the background of decades in training experience and aviation>[...]

ANN's Daily Aero-Term (04.14.24): Maximum Authorized Altitude

Maximum Authorized Altitude A published altitude representing the maximum usable altitude or flight level for an airspace structure or route segment. It is the highest altitude on >[...]

blog comments powered by Disqus



Advertisement

Advertisement

Podcasts

Advertisement

© 2007 - 2024 Web Development & Design by Pauli Systems, LC